Journal of the American Oil Chemists' Society

, Volume 75, Issue 4, pp 425–439

Phase transitions and polymorphism of cocoa butter

  • C. Loisel
  • G. Keller
  • G. Lecq
  • C. Bourgaux
  • M. Ollivon


The polymorphism and phase transitions of cocoa butter (CB) have been reexamined separately by differential scanning calorimetry (DSC) and X-ray diffraction as a function of temperature (XRDT) at scanning rates between 0.1 to 5°C/min and 0.1 to 2°C/min, respectively. A new instrument, which allowed simultaneous DSC and XRDT recordings from the same sample by taking advantage of the high-energy flux of a synchrotron, was employed for characterization of the intermediate phase transitions. These techniques allowed us to confirm the existence of the six polymorphic forms of CB (called I to VI) by in situ characterization of their formation in the DSC + XRDT sample holder. A detailed study of Form I structure led us to propose a liquid-crystal organization in which some of the chains displayed sharp long-spacing lines (d001=52.6±0.5 Å) and a β′ organization (4.19 and 3.77 Å), while the others remained unordered with broad scattering (maxima at about 112 and 36.5 Å). The organization of this liquid crystalline phase is compared to that of fat and oil liquids. This liquid crystalline phase progressively transformed on heating into a more stable phase (Form II, α type, d001=48.5±0.5 Å and short-spacing at 4.22 Å). Form III was only observed in a sharp temperature domain through its specific short-spacings. The existence of the six species has been essentially related to the crystallization of monounsaturated triacylglycerols (TAG), while trisaturated species were found partly solid-soluble in these six polymorphic forms. An insoluble fraction crystallized independently of the polymorphism of the monounsaturated TAG in a separate phase with long-spacings that were either of the α (49.6±0.5 Å) or β (44.2±0.5 Å) form. In mixture with Form V, this fraction melts and solubilizes in the liquid phase at 37.5°C. Isolation of these high-melting crystals shows a melting point of about 50°C. High-performance liquid chromatography analysis of this fraction confirmed an increase from 3.0 to 11.3% of saturated TAG and their association with part of the 1,3-stearoyl-2-oleoylglycerol preferentially to 1-palmitoyl-2-oleoyl-3-stearoylglycerol and (1,3-palmitoyl-2-oleoylglycerol).

Key words

Chocolate crystallization cocoa butter DSC liquid crystals palm oil phase transitions polymorphism triacylglycerols X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sato, K., T. Arishima, Z.H. Wang, K. Ojima, N. Sagi, and H. Mori, Polymorphism of POP and SOS. I. Occurrence and Polymorphic Transformation. J. Am. Oil Chem. Soc. 66:664–674 (1989).Google Scholar
  2. 2.
    Chapman, D., The Structure of Lipids by Spectroscopic and X-ray Techniques, Methuen, London, 1965, pp. 221–315.Google Scholar
  3. 3.
    Larsson, K., Molecular Arrangement in Glycerides, Fette Seifen Anstrichm. 74:136–142 (1972).CrossRefGoogle Scholar
  4. 4.
    Lutton, E.S., Lipid Structures, J. Am. Oil Chem. Soc. 49:1–9. (1972).CrossRefGoogle Scholar
  5. 5.
    Garti, N., and K. Sato, Crystallization and Polymorphism of Fats and Fatty Acids—Surfactant Science Series, Vol. 31, Marcel Dekker Inc., New York, 1988.Google Scholar
  6. 6.
    Ollivon, M., Triglycérides, in Manuel des Corps Gras, Lavoisier, Paris, 1992, pp. 469–503.Google Scholar
  7. 7.
    Riiner, U., Investigation of the Polymorphism of Fats and Oils by Temperature Programmed X-Ray Diffraction, Lebensm. Wiss. Technol. 3:101–106 (1970).Google Scholar
  8. 8.
    Larsson, K., On the Structure of the Liquid State of Triglycerides, J. Am. Oil Chem. Soc. 69:835–836 (1992).Google Scholar
  9. 9.
    Cebula, D.J., D.J. McClements, M.J.W. Powey, and P. Smith, Neutron Diffraction Studies of Liquid and Crystalline Trilaurin, Ibid.:130–136 (1992).CrossRefGoogle Scholar
  10. 10.
    Wille, R.L., and E.S. Lutton, Polymorphism of CB, Ibid.:491–496 (1966).PubMedGoogle Scholar
  11. 11.
    Kunutsor, S.K., and M. Ollivon, Ternary Phase Diagram of β Stable Forms of Major Triglycerides of CB (POP, POS, SOS), 16th ISF Research World Congress, edited by J. Hollo, Budapest, 1983, p. 11.Google Scholar
  12. 12.
    Sato, K., Physical and Molecular Properties of Lipid Polymorphs—A Review, Food Microstructure 6:151–159 (1987).Google Scholar
  13. 13.
    Arishima, T., N. Sagi, H. Mori, and K. Sato, Polymorphism of POS. I. Occurrence and Polymorphic Transformation, J. Am. Oil Chem. Soc. 68:710–715 (1991).Google Scholar
  14. 14.
    Duck, W., The Measurement of Unstable Fat in Finished Chocolate, Manufacturing Confectioner 35 (6):67–72. (1964).Google Scholar
  15. 15.
    Chapman, G.M., E.E. Akehurst, and W.B. Wright, Cocoa Butter and Confectionery Fats. Studies Using Programmed Temperature X-Ray Diffraction and Differential Scanning Calorimetry, J. Am. Oil Chem. Soc. 48:824–830 (1971).CrossRefGoogle Scholar
  16. 16.
    Adenier, H., M. Ollivon, R. Perron, and H. Chaveron, Le blanchiment gras. I. Observations et commentaires, Chocolaterie Confiserie de France 315:7–14 (1975).Google Scholar
  17. 17.
    Huyghebaert, A., and H. Hendrickx, Polymorphism of Cocoa Butter, Shown by Differential Scanning Calorimetry, Lebensm. Wiss. Technol. 4:59–63 (1971).Google Scholar
  18. 18.
    Lovegren, N.V., M.S. Gline, and R.O. Feuge, Polymorphic Changes in Mixtures of Confectionery Fats, J. Am. Oil Chem. Soc. 53:83–88 (1976).CrossRefGoogle Scholar
  19. 19.
    Merken, G.V., and S.V. Vaeck, Etude du polymorphisme du beurre de cacao par calorimétrie DSC, Lebensm. Wiss. Technol. 13:314–317 (1980).Google Scholar
  20. 20.
    Davis, T.R., and P.S. Dimick, Solidification of Cocoa Butter, Proc. PMCA Prod. Conf. 40:104–108 (1986).Google Scholar
  21. 21.
    Schlichter-Aronhime, J., and N. Garti, in Crystallization and Polymorphism of Fats and Fatty Acids, Surfactant Science Series, Vol. 31, edited by N. Garti and K. Sato, Marcel Dekker Inc., New York, 1988, pp. 363–393.Google Scholar
  22. 22.
    Schlichter-Aronhime, J., S. Sarig, and N. Garti, Reconsideration of Polymorphic Transformations in Cocoa Butter Using DSC, J. Am. Oil Chem. Soc. 65:1140–1143 (1988).Google Scholar
  23. 23.
    Becker, K., Les causes du blanchiment gras par les matières grasses du chocolat et des bonbons au chocolat, Rev. Int. Choc. 1:250–254 (1957).Google Scholar
  24. 24.
    van Malssen, K.F., Real-Time X-Ray Powder Diffraction Applied to Cocoa Butter and Graphite Intercalates, Ph.D., Amsterdam University, 1994.Google Scholar
  25. 25.
    Davis, T.R., and P.S. Dimick, Crystals Formed During Cocoa Butter Solidification, J. Am. Oil Chem. Soc. 66:1488–1493 (1989).Google Scholar
  26. 26.
    Davis, T.R., and P.S. Dimick, Lipid Composition of High-Melting Seed Crystals Formed During Cocoa Butter Solidification, Ibid.:1494–1498 (1989).Google Scholar
  27. 27.
    Chaiseri, S., and P.S. Dimick, Dynamic Crystallization of Cocoa Butter. I. Characterization of Simple Lipids in Rapid- and Slow-Nucleation Cocoa Butters and Their Seed Crystals, Ibid.:1491–1496 (1995).CrossRefGoogle Scholar
  28. 28.
    Chaiseri, S., and P.S. Dimick, Dynamic Crystallization of Cocoa Butter. II. Morphological, Thermal and Chemical Characteristics During Crystal Growth, Ibid.:1497–1504 (1995).CrossRefGoogle Scholar
  29. 29.
    Cebula, D.J., K.M. Dilley, and K. Smith, Continuous Tempering Studies on Model Confectionery Systems, PMCA Production Conference 45:42–47 (1991).Google Scholar
  30. 30.
    Kellens, M., W. Meeussen, C. Riekel, and H. Reynaers, Time-Resolved X-ray Diffraction Studies of the Polymorphic Behaviour of Tripalmitin Using Synchrotron Radiation, Chem. Phys. Lipids. 52:79–98 (1990).CrossRefGoogle Scholar
  31. 31.
    Lavigne, F., C. Bourgaux, and M. Ollivon, Phase Transition of Saturated Triglycerides, J. Phys. IV, Colloque C8, sup. au J. Phys. I. 3:137–140 (1993).Google Scholar
  32. 32.
    van Gelder, R.N.M.N., N. Hogdson, K.J. Roberts, A. Rossi, M. Wells, M. Polgreen, and I. Smith, Crystallisation and Polymorphism in Cocoa Butter Fat: In-situ Studies Using Synchrotron Radiation X-ray Diffraction, in Crystal Growth of Organic Materials, ACS Conference Proceedings Series, edited by A.S. Myerson, 1996, pp. 209–215.Google Scholar
  33. 33.
    Sato, K., in Advances in Applied Lipid Research, Vol. 2, edited by F. Padley, JAI Press Inc., 1996, pp. 213–268.Google Scholar
  34. 34.
    Keller, G., F. Lavigne, C. Loisel, M. Ollivon, and C. Bourgaux, Investigation of the Complex Thermal Behavior of Fats. Combined DSC and X-ray Diffraction Techniques, J. Thermal Anal. 47:1–21 (1996).CrossRefGoogle Scholar
  35. 35.
    Lavigne, F., Polymorphisme et transitions de phases des Triglycérides. Applications aux propriétés thermiques et structurales de la matière grasse laitière anhydre et de ses fractions, Ph.D. Université Paris VII, Paris XI et E.N.S.I.A, 1995.Google Scholar
  36. 36.
    Ollivon, M., and R. Perron, Etude de mélanges binaires de triglycérides dérivés des acides palmitique et stéarique, Chem. Phys. Lipids, 25:395–414 (1979).CrossRefGoogle Scholar
  37. 37.
    Fraisse, B., Automatisation, traitement du signal et recueil de données en diffraction X et analyse thermique. Exploitation, analyse et représentation de données., Ph.D., Université de Montpellier II, 1995.Google Scholar
  38. 38.
    Grabielle-Madelmont, C., and R. Perron, Calorimetric Studies on Phospholipid-Water Systems. I. Dl-Dipalmitoylphosphatidylcholine (DPPC) Water System, J. Colloid Interface Sci. 95:471–482 (1983).CrossRefGoogle Scholar
  39. 39.
    Loisel, C., G. Lecq, G. Keller, and M. Ollivon, Dynamic Crystallization of Dark Chocolate: Influence of Temperature and Lipid Additives, J. Food Sci., in press.Google Scholar
  40. 40.
    Adenier, H., H. Chaveron, and M. Ollivon, Mechanism of Fat Bloom Development on Chocolate, in Shelf Life Studies of Foods and Beverages; Chemical, Biological, Physical and Nutritional Aspects, edited by G. Charalambous, Elsevier Science Publishers B.V., 1993, pp. 353–389.Google Scholar
  41. 41.
    Ollivon, M., and R. Perron, Enthalpies and Entropies Measurements of Unstable Forms of Saturated Even Monoacid Triglycerides, Thermochim. Acta 53:183–194 (1982).CrossRefGoogle Scholar
  42. 42.
    Rossell, J.B., Phase Diagrams of Triglyceride Systems, Adv. Lipids Res. 5:353–408 (1967).Google Scholar
  43. 43.
    Dimick, P.S., and M.D. Manning, Thermal and Compositional Properties of Cocoa Butter During Static Crystallization, J. Am. Oil Chem. Soc. 64:1663–1669 (1987).CrossRefGoogle Scholar
  44. 44.
    Hayter, J.B., Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, Proceedings of the International School of Physics, edited by Corti and De Giorgio, Elsevier, Amsterdam, 1985, p. 59.Google Scholar
  45. 45.
    Small, D., Glycerides, The Physical Chemistry of Lipids, in Handbook of Lipid Research IV, Plenum Press, New York, 1986.Google Scholar
  46. 46.
    De Jong, S., and T.C. Van Soest, Crystal Structures and Melting Points of Saturated Triglycerides in the β-2 Phase, Acta Crystallogr.:1570–1583 (1978).Google Scholar
  47. 47.
    Timms, R.E., Phase Behavior of Fats and Their Mixtures, Prog. Lipid Res. 23:1–38 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    van den Tempel, M., Crystallization in Dispersed Systems, Physico-Chimie des composés amphiphiles, Colloques nationaux du C.N.R.S. no 938, edited by R. Perron and P. Bothorel, 1979, pp. 261–264.Google Scholar
  49. 49.
    Ollivon, M., and R. Perron, Fat Science, 107–116 (1985).Google Scholar
  50. 50.
    Loisel, C., Physico-chimie du chocolat: cristallisation du beurre de cacao et proprietés structurales, Ph.D. Université Paris VII, Paris XI et E.N.S.I.A., 1996.Google Scholar

Copyright information

© AOCS Press 1998

Authors and Affiliations

  • C. Loisel
    • 1
    • 2
  • G. Keller
    • 1
  • G. Lecq
    • 2
  • C. Bourgaux
    • 3
  • M. Ollivon
    • 1
  1. 1.Laboratoire de Physico-Chimie des Systèmes Polyphasés, CNRS URA 1218Université Paris-SudChâtenay-MalabryFrance
  2. 2.Centre Jean Thèves, groupe DANONE, Branche BiscuitsAthis-Mons CedexFrance
  3. 3.Laboratoire pour l’Utilisation du Rayonnement ElectromagnétiqueUniversité Paris-SudOrsayFrance

Personalised recommendations