Journal of the American Oil Chemists' Society

, Volume 94, Issue 2, pp 169–186 | Cite as

Sustainable Synthetic Approaches for the Preparation of Plant Oil-Based Thermosets

Review

Abstract

The good availability and high degree of functionalization possibilities of plant oils entitles them to be one of the most intensively studied renewable resources, especially in polymer science. However, in line with the principles of green chemistry, the use of renewable resources should be accompanied with catalytic procedures, comparably less or non-toxic chemicals, as well as reduction of waste and energy consumption to achieve an overall sustainable process. In this review, these aspects are addressed using the example of plant oil-based thermoset materials, which bear the advantage, in terms of sustainability, of not requiring a separation or purification step prior to polymerization. The direct homopolymerization of plant oils, as well as copolymerization, exclusively with other renewable resources, are highlighted. The sustainability of the synthesis of a broad range of thermosets including epoxy resins, polyurethane networks, polybenzoxazines and unsaturated polyesters is discussed.

Keywords

Vegetable oil Thermoset Sustainability Renewable resources Polymer 

References

  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefGoogle Scholar
  2. 2.
    Petrus L, Noordermeer MA (2006) Biomass to biofuels, a chemical perspective. Green Chem 8(10):861–867CrossRefGoogle Scholar
  3. 3.
    Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429CrossRefGoogle Scholar
  4. 4.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502CrossRefGoogle Scholar
  5. 5.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558CrossRefGoogle Scholar
  6. 6.
    Llevot A, Meier MAR (2016) Renewability—a principle of utmost importance! Green Chem 18(18):4800–4803CrossRefGoogle Scholar
  7. 7.
    Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39CrossRefGoogle Scholar
  8. 8.
    Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2(6):550–554CrossRefGoogle Scholar
  9. 9.
    Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34(1):8–37CrossRefGoogle Scholar
  10. 10.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290CrossRefGoogle Scholar
  11. 11.
    Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599CrossRefGoogle Scholar
  12. 12.
    Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704CrossRefGoogle Scholar
  13. 13.
    Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16(9):337–343CrossRefGoogle Scholar
  14. 14.
    Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802CrossRefGoogle Scholar
  15. 15.
    Montero de Espinosa L, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science?! Eur Polym J 47(5):837–852CrossRefGoogle Scholar
  16. 16.
    Islam MR, Beg MDH, Jamari SS (2014) Development of vegetable-oil-based polymers. J Appl Polym Sci 131(18):40787–40800CrossRefGoogle Scholar
  17. 17.
    Savaliya ML, Dhorajiya BD, Dholakiya BZ (2015) Current trends in separation and purification of fatty acid methyl ester. Sep Purif Rev 44(1):28–40CrossRefGoogle Scholar
  18. 18.
    Maisonneuve L, Lebarbe T, Grau E, Cramail H (2013) Structure-properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym Chem 4(22):5472–5517CrossRefGoogle Scholar
  19. 19.
    Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114(2):1082–1115CrossRefGoogle Scholar
  20. 20.
    Ma S, Li T, Liu X, Zhu J (2016) Research progress on bio-based thermosetting resins. Polym Int 65(2):164–173CrossRefGoogle Scholar
  21. 21.
    Baroncini EA, Kumar Yadav S, Palmese GR, Stanzione JF (2016) Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J Appl Polym Sci 133(45):44103–44122CrossRefGoogle Scholar
  22. 22.
    Ding C, Matharu AS (2014) Recent developments on biobased curing agents: a review of their preparation and use. ACS Sustain Chem Eng 2(10):2217–2236CrossRefGoogle Scholar
  23. 23.
    Ronda JC, Lligadas G, Galià M, Cádiz V (2013) A renewable approach to thermosetting resins. React Funct Polym 73(2):381–395CrossRefGoogle Scholar
  24. 24.
    Ronda JC, Lligadas G, Galià M, Cádiz V (2011) Vegetable oils as platform chemicals for polymer synthesis. Eur J Lipid Sci Technol 113(1):46–58CrossRefGoogle Scholar
  25. 25.
    Tan SG, Chow WS (2010) Biobased epoxidized vegetable oils and its greener epoxy blends: a review. Polym Plast Technol Eng 49(15):1581–1590CrossRefGoogle Scholar
  26. 26.
    Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509CrossRefGoogle Scholar
  27. 27.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312CrossRefGoogle Scholar
  29. 29.
    Dubé MA, Salehpour S (2014) Applying the principles of green chemistry to polymer production technology. Macromol React Eng 8(1):7–28CrossRefGoogle Scholar
  30. 30.
    Hutchinson GH (2002) Traditional and new uses for vegetable oils in the surface coatings and allied industries. Surf Coat Int Part B Coat Trans 85(1):1–8CrossRefGoogle Scholar
  31. 31.
    Palmer JA (1924) The manufacture of linoleum. Ind Eng Chem News Ed 2(11):3Google Scholar
  32. 32.
    Soucek MD, Khattab T, Wu J (2012) Review of autoxidation and driers. Prog Org Coat 73(4):435–454CrossRefGoogle Scholar
  33. 33.
    Tallman KA, Roschek B, Porter NA (2004) Factors influencing the autoxidation of fatty acids: effect of olefin geometry of the nonconjugated diene. J Am Chem Soc 126(30):9240–9247CrossRefGoogle Scholar
  34. 34.
    Porter NA, Wujek DG (1984) Autoxidation of polyunsaturated fatty acids, an expanded mechanistic study. J Am Chem Soc 106(9):2626–2629CrossRefGoogle Scholar
  35. 35.
    Robertson ML, Chang K, Gramlich WM, Hillmyer MA (2010) Toughening of polylactide with polymerized soybean oil. Macromolecules 43(4):1807–1814CrossRefGoogle Scholar
  36. 36.
    Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12(11):1893–1909CrossRefGoogle Scholar
  37. 37.
    Luo C, Grigsby WJ, Edmonds NR, Al-Hakkak J (2013) Vegetable oil thermosets reinforced by tannin–lipid formulations. Acta Biomater 9(2):5226–5233CrossRefGoogle Scholar
  38. 38.
    Bai W, Xiao X, Chen Q, Xu Y, Zheng S, Lin J (2012) Synthesis and characterization of cross-linked polymer from cardanol by solvent-free grinding polymerization. Prog Org Coat 75(3):184–189CrossRefGoogle Scholar
  39. 39.
    Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11CrossRefGoogle Scholar
  40. 40.
    Prileschajew N (1909) Oxidation ungesättigter Verbindungen mittels organischer Superoxide. Ber Dtsch Chem Ges 42(4):4811–4815CrossRefGoogle Scholar
  41. 41.
    Berman U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JO, Rüsch gen Klaas M, Schäfer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem Int Ed 39(13):2206–2224CrossRefGoogle Scholar
  42. 42.
    Chua SC, Xu X, Guo Z (2012) Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochem 47(10):1439–1451CrossRefGoogle Scholar
  43. 43.
    Milchert E, Malarczyk K, Kłos M (2015) Technological aspects of chemoenzymatic epoxidation of fatty acids, fatty acid esters and vegetable oils: a review. Molecules 20(12):19778CrossRefGoogle Scholar
  44. 44.
    Alam M, Akram D, Sharmin E, Zafar F, Ahmad S (2014) Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem 7(4):469–479CrossRefGoogle Scholar
  45. 45.
    Vendamme R, Schüwer N, Eevers W (2014) Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. J Appl Polym Sci 131(17):40669–40685CrossRefGoogle Scholar
  46. 46.
    Okochi KD, Han GS, Aldridge IM, Liu Y, Zhang W (2013) Covalent assembly of heterosequenced macrocycles and molecular cages through orthogonal dynamic covalent chemistry (ODCC). Org Lett 15(17):4296–4299CrossRefGoogle Scholar
  47. 47.
    Liu Z, Biswas A (2013) Fluoroantimonic acid hexahydrate (HSbF6·6H2O) catalysis: the ring-opening polymerization of epoxidized soybean oil. Appl Catal A 453:370–375CrossRefGoogle Scholar
  48. 48.
    Biswas A, Liu Z, Cheng HN (2016) Polymerization of epoxidized triglycerides with fluorosulfonic acid. Int J Polym Anal Charact 21(1):85–93CrossRefGoogle Scholar
  49. 49.
    Xu J, Liu Z, Erhan SZ (2008) Viscoelastic properties of a biological hydrogel produced from soybean oil. J Am Oil Chem Soc 85(3):285–290CrossRefGoogle Scholar
  50. 50.
    Liu Z, Erhan SZ (2010) Ring-opening polymerization of epoxidized soybean oil. J Am Oil Chem Soc 87(4):437–444CrossRefGoogle Scholar
  51. 51.
    Liu Z (2013) Preparation of biopolymers from plant oils in green media. Bioenergy Res 6(4):1230–1236CrossRefGoogle Scholar
  52. 52.
    Liu Z, Doll KM, Holser RA (2009) Boron trifluoride catalyzed ring-opening polymerization of epoxidized soybean oil in liquid carbon dioxide. Green Chem 11(11):1774–1780CrossRefGoogle Scholar
  53. 53.
    Liu Z, Shah SN, Evangelista RL, Isbell TA (2013) Polymerization of euphorbia oil with Lewis acid in carbon dioxide media. Ind Crops Prod 41:10–16CrossRefGoogle Scholar
  54. 54.
    Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895CrossRefGoogle Scholar
  55. 55.
    Pappas SP, Hill LW (1981) Kinetic parameter considerations for maximizing stability and minimizing cure temperature of thermosetting coating. J Coat Technol 53(675):43–51Google Scholar
  56. 56.
    Naumann S, Buchmeiser MR (2014) Latent and delayed action polymerization systems. Macromol Rapid Commun 35(7):682–701CrossRefGoogle Scholar
  57. 57.
    Park SJ, Jin FL, Lee JR (2004) Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun 25(6):724–727CrossRefGoogle Scholar
  58. 58.
    Kobayashi M, Sanda F, Endo T (2000) Application of phosphonium ylides to latent catalysts. 2. Kinetic study on the thermal latency of the phosphonium ylides in the polyaddition of bisphenol A diglycidyl ether with bisphenol A. Macromolecules 33(15):5384–5387CrossRefGoogle Scholar
  59. 59.
    Park SJ, Jin FL, Lee JR, Shin JS (2005) Cationic polymerization and physicochemical properties of a biobased epoxy resin initiated by thermally latent catalysts. Eur Polym J 41(2):231–237CrossRefGoogle Scholar
  60. 60.
    Kim JR, Sharma S (2012) The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind Crops Prod 36(1):485–499CrossRefGoogle Scholar
  61. 61.
    Tsujimoto T, Uyama H (2014) Full biobased polymeric material from plant oil and poly(lactic acid) with a shape memory property. ACS Sustain Chem Eng 2(8):2057–2062CrossRefGoogle Scholar
  62. 62.
    Sharmin E, Zafar F, Akram D, Alam M, Ahmad S (2015) Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crops Prod 76:215–229CrossRefGoogle Scholar
  63. 63.
    Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin JJ (2013) The use of renewable feedstock in UV-curable materials—a new age for polymers and green chemistry. Prog Polym Sci 38(6):932–962CrossRefGoogle Scholar
  64. 64.
    Crivello JV, Narayan R (1992) Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization. Chem Mater 4(3):692–699CrossRefGoogle Scholar
  65. 65.
    Muturi P, Wang D, Dirlikov S (1994) Epoxidized vegetable oils as reactive diluents I. Comparison of vernonia, epoxidized soybean and epoxidized linseed oils. Prog Org Coat 25(1):85–94CrossRefGoogle Scholar
  66. 66.
    Li Y, Sun XS (2014) Di-hydroxylated soybean oil polyols with varied hydroxyl values and their influence on UV-curable pressure-sensitive adhesives. J Am Oil Chem Soc 91(8):1425–1432CrossRefGoogle Scholar
  67. 67.
    Chakrapani S, Crivello† JV (1998) Synthesis and photoinitiated cationic polymerization of epoxidized castor oil and its derivatives. J Macromol Sci Part A 35(4):691–710CrossRefGoogle Scholar
  68. 68.
    Gu H, Ren K, Martin D, Marino T, Neckers DC (2002) Cationic UV-cured coatings containing epoxidized soybean oil initiated by new onium salts containing tetrakis(pentafluorophenyl)gallate anion. J Coat Technol 74(927):49–52CrossRefGoogle Scholar
  69. 69.
    Ortiz RA, López DP, Cisneros MdLG, Valverde JCR, Crivello JV (2005) A kinetic study of the acceleration effect of substituted benzyl alcohols on the cationic photopolymerization rate of epoxidized natural oils. Polymer 46(5):1535–1541CrossRefGoogle Scholar
  70. 70.
    Thames SF, Yu H (1999) Cationic UV-cured coatings of epoxide-containing vegetable oils. Surf Coat Technol 115(2–3):208–214CrossRefGoogle Scholar
  71. 71.
    Zong Z, Soucek MD, Liu Y, Hu J (2003) Cationic photopolymerization of epoxynorbornane linseed oils: the effect of diluents. J Polym Sci Part A Polym Chem 41(21):3440–3456CrossRefGoogle Scholar
  72. 72.
    Zou K, Soucek MD (2005) UV-curable cycloaliphatic epoxide based on modified linseed oil: synthesis, characterization and kinetics. Macromol Chem Phys 206(9):967–975CrossRefGoogle Scholar
  73. 73.
    Soucek MD, Chen J (2003) Model for the effects of water on the cationic UV-curing of cyclohexyl epoxides. J Coat Technol 75(937):49–58CrossRefGoogle Scholar
  74. 74.
    Chen Z, Zhang Y, Chisholm BJ, Webster DC (2008) A humidity blocker approach to overcoming the humidity interference with cationic photopolymerization. J Polym Sci Part A Polym Chem 46(13):4344–4351CrossRefGoogle Scholar
  75. 75.
    Chen Z, Chisholm BJ, Webster DC, Zhang Y, Patel S (2009) Study of epoxidized-cardanol containing cationic UV curable materials. Prog Org Coat 65(2):246–250CrossRefGoogle Scholar
  76. 76.
    Ahn BK, Sung J, Kim N, Kraft S, Sun XS (2013) UV-curable pressure-sensitive adhesives derived from functionalized soybean oils and rosin ester. Polym Int 62(9):1293–1301CrossRefGoogle Scholar
  77. 77.
    Li Y, Wang D, Sun XS (2015) Copolymers from epoxidized soybean oil and lactic acid oligomers for pressure-sensitive adhesives. RSC Adv 5(35):27256–27265CrossRefGoogle Scholar
  78. 78.
    Crivello JV, Bulut U (2005) Curcumin: a naturally occurring long-wavelength photosensitizer for diaryliodonium salts. J Polym Sci Part A Polym Chem 43(21):5217–5231CrossRefGoogle Scholar
  79. 79.
    Tehfe MA, Lalevée J, Gigmes D, Fouassier JP (2010) Green chemistry: sunlight-induced cationic polymerization of renewable epoxy monomers under air. Macromolecules 43(3):1364–1370CrossRefGoogle Scholar
  80. 80.
    Tran P, Seybold K, Graiver D, Narayan R (2005) Free radical meleation of soybean oil via a single-step process. J Am Oil Chem Soc 82(3):189–194CrossRefGoogle Scholar
  81. 81.
    Wojcieszak R, Santarelli F, Paul S, Dumeignil F, Cavani F, Gonçalves RV (2015) Recent developments in maleic acid synthesis from bio-based chemicals. Sustain Chem Process 3(1):1–11CrossRefGoogle Scholar
  82. 82.
    Warth H, Mülhaupt R, Hoffmann B, Lawson S (1997) Polyester networks based upon epoxidized and maleinated natural oils. Die Angew Makromol Chem 249(1):79–92CrossRefGoogle Scholar
  83. 83.
    Mahendran AR, Aust N, Wuzella G, Kandelbauer A (2012) Synthesis and characterization of a bio-based resin from linseed oil. Macromol Symp 311(1):18–27CrossRefGoogle Scholar
  84. 84.
    Takahashi T, Hirayama KI, Teramoto N, Shibata M (2008) Biocomposites composed of epoxidized soybean oil cured with terpene-based acid anhydride and cellulose fibers. J Appl Polym Sci 108(3):1596–1602CrossRefGoogle Scholar
  85. 85.
    Biermann U, Fürmeier S, Metzger J (1998) Some carbon, nitrogen- and carbon, oxygen-bond forming additions to unsaturated fatty compounds. Lipid Fett 100(6):236–246CrossRefGoogle Scholar
  86. 86.
    Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ (2011) A fully biobased epoxy resin from vegetable oils: from the synthesis of the precursors by thiol-ene reaction to the study of the final material. J Polym Sci Part A Polym Chem 49(11):2434–2444CrossRefGoogle Scholar
  87. 87.
    Stemmelen M, Lapinte V, Habas JP, Robin JJ (2015) Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil. Eur Polym J 68:536–545CrossRefGoogle Scholar
  88. 88.
    P.C.A.C. Corporation. (https://www.cardolite.com/phenalkamine). Accessed 13 Dec 2016
  89. 89.
    Darroman E, Bonnot L, Auvergne R, Boutevin B, Caillol S (2015) New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol. Eur J Lipid Sci Technol 117(2):178–189CrossRefGoogle Scholar
  90. 90.
    Over LC, Meier MAR (2016) Sustainable allylation of organosolv lignin with diallyl carbonate and detailed structural characterization of modified lignin. Green Chem 18(1):197–207CrossRefGoogle Scholar
  91. 91.
    Supanchaiyamat N, Shuttleworth PS, Hunt AJ, Clark JH, Matharu AS (2012) Thermosetting resin based on epoxidised linseed oil and bio-derived crosslinker. Green Chem 14(6):1759–1765CrossRefGoogle Scholar
  92. 92.
    Ding C, Shuttleworth PS, Makin S, Clark JH, Matharu AS (2015) New insights into the curing of epoxidized linseed oil with dicarboxylic acids. Green Chem 17(7):4000–4008CrossRefGoogle Scholar
  93. 93.
    Peters M, von der Assen N (2016) It is better to prevent waste than to treat or clean up waste after it is formed—or: what Benjamin Franklin has to do with “Green Chemistry”. Green Chem 18(5):1172–1174CrossRefGoogle Scholar
  94. 94.
    Kummerer K (2007) Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem 9(8):899–907CrossRefGoogle Scholar
  95. 95.
    Uçkun Kıran E, Trzcinski AP, Liu Y (2015) Platform chemical production from food wastes using a biorefinery concept. J Chem Technol Biotechnol 90(8):1364–1379CrossRefGoogle Scholar
  96. 96.
    Rivas B, Torrado A, Moldes AB, Domínguez JM (2006) Tartaric acid recovery from distilled lees and use of the residual solid as an economic nutrient for Lactobacillus. J Agric Food Chem 54(20):7904–7911CrossRefGoogle Scholar
  97. 97.
    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73(4):429–442CrossRefGoogle Scholar
  98. 98.
    Ma S, Webster DC (2015) Naturally occurring acids as cross-linkers to yield VOC-free, high-performance, fully bio-based, degradable thermosets. Macromolecules 48(19):7127–7137CrossRefGoogle Scholar
  99. 99.
    Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334(6058):965–968CrossRefGoogle Scholar
  100. 100.
    Altuna FI, Pettarin V, Williams RJJ (2013) Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chem 15(12):3360–3366CrossRefGoogle Scholar
  101. 101.
    Arbenz A, Averous L (2015) Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem 17(5):2626–2646CrossRefGoogle Scholar
  102. 102.
    Shibata M, Teramoto N, Makino K (2011) Preparation and properties of biocomposites composed of epoxidized soybean oil, tannic acid, and microfibrillated cellulose. J Appl Polym Sci 120(1):273–278CrossRefGoogle Scholar
  103. 103.
    Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6(33):5961–5983CrossRefGoogle Scholar
  104. 104.
    Pin JM, Guigo N, Vincent L, Sbirrazzuoli N, Mija A (2015) Copolymerization as a strategy to combine epoxidized linseed oil and furfuryl alcohol: the design of a fully bio-based thermoset. ChemSusChem 8(24):4149–4161CrossRefGoogle Scholar
  105. 105.
    Lligadas G, Ronda JC, Galià M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11(11):2825–2835CrossRefGoogle Scholar
  106. 106.
    Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115(22):12407–12439CrossRefGoogle Scholar
  107. 107.
    Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26(7):707–761CrossRefGoogle Scholar
  108. 108.
    Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46(10):3771–3792CrossRefGoogle Scholar
  109. 109.
    Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15(6):1431–1455CrossRefGoogle Scholar
  110. 110.
    Blattmann H, Fleischer M, Bähr M, Mülhaupt R (2014) Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol Rapid Commun 35(14):1238–1254CrossRefGoogle Scholar
  111. 111.
    Bahr M, Mulhaupt R (2012) Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem 14(2):483–489CrossRefGoogle Scholar
  112. 112.
    Javni I, Hong DP, Petrović ZS (2013) Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. J Appl Polym Sci 128(1):566–571CrossRefGoogle Scholar
  113. 113.
    Tamami B, Sohn S, Wilkes GL (2004) Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 92(2):883–891CrossRefGoogle Scholar
  114. 114.
    Javni I, Hong DP, Petrović ZS (2008) Soy-based polyurethanes by nonisocyanate route. J Appl Polym Sci 108(6):3867–3875CrossRefGoogle Scholar
  115. 115.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559CrossRefGoogle Scholar
  116. 116.
    Poussard L, Mariage J, Grignard B, Detrembleur C, Jérôme C, Calberg C, Heinrichs B, De Winter J, Gerbaux P, Raquez JM, Bonnaud L, Dubois P (2016) Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49(6):2162–2171CrossRefGoogle Scholar
  117. 117.
    Carre C, Bonnet L, Averous L (2015) Solvent- and catalyst-free synthesis of fully biobased nonisocyanate polyurethanes with different macromolecular architectures. RSC Adv 5(121):100390–100400CrossRefGoogle Scholar
  118. 118.
    Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32(11):1344–1391CrossRefGoogle Scholar
  119. 119.
    Lligadas G, Tuzun A, Ronda JC, Galia M, Cadiz V (2014) Polybenzoxazines: new players in the bio-based polymer arena. Polym Chem 5(23):6636–6644CrossRefGoogle Scholar
  120. 120.
    Sorokin AB, Kudrik EV, Alvarez LX, Afanasiev P, Millet JMM, Bouchu D (2010) Oxidation of methane and ethylene in water at ambient conditions. Catal Today 157(1–4):149–154CrossRefGoogle Scholar
  121. 121.
    Calo E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, Stifani C (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9(7):754–759CrossRefGoogle Scholar
  122. 122.
    Ambrožič R, Šebenik U, Krajnc M (2015) Synthesis, curing kinetics, thermal and mechanical behavior of novel cardanol-based benzoxazines. Polymer 76:203–212CrossRefGoogle Scholar
  123. 123.
    Puchot L, Verge P, Fouquet T, Vancaeyzeele C, Vidal F, Habibi Y (2016) Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets. Green Chem 18(11):3346–3353CrossRefGoogle Scholar
  124. 124.
    Wang C, Sun J, Liu X, Sudo A, Endo T (2012) Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem 14(10):2799–2806CrossRefGoogle Scholar
  125. 125.
    Thirukumaran P, Shakila Parveen A, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2(12):2790–2801CrossRefGoogle Scholar
  126. 126.
    Zhang L, Zhu Y, Li D, Wang M, Chen H, Wu J (2015) Preparation and characterization of fully renewable polybenzoxazines from monomers containing multi-oxazine rings. RSC Adv 5(117):96879–96887CrossRefGoogle Scholar
  127. 127.
    Penczek P, Czub P, Pielichowski J (2005) Unsaturated polyester resins: chemistry and technology, crosslinking in materials science. Springer, Berlin, pp 1–95CrossRefGoogle Scholar
  128. 128.
    Guo B, Chen Y, Lei Y, Zhang L, Zhou WY, Rabie ABM, Zhao J (2011) Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules 12(4):1312–1321CrossRefGoogle Scholar
  129. 129.
    Jiang Y, Woortman AJJ, Alberda van Ekenstein GOR, Loos K (2015) Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polym Chem 6(30):5451–5463CrossRefGoogle Scholar
  130. 130.
    Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109(11):5288–5353CrossRefGoogle Scholar
  131. 131.
    Miletić N, Loos K, Gross RA (2010) Enzymatic polymerization of polyester, biocatalysis in polymer chemistry. Wiley, Weinheim, Germany, pp 83–129CrossRefGoogle Scholar
  132. 132.
    Hong J, Luo Q, Wan X, Petrović ZS, Shah BK (2012) Biopolymers from vegetable oils via catalyst- and solvent-free “Click” chemistry: effects of cross-linking density. Biomacromolecules 13(1):261–266CrossRefGoogle Scholar
  133. 133.
    Hong J, Luo Q, Shah BK (2010) Catalyst- and solvent-free “Click” chemistry: a facile approach to obtain cross-linked biopolymers from soybean oil. Biomacromolecules 11(11):2960–2965CrossRefGoogle Scholar
  134. 134.
    Xia Y, Larock RC (2010) Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51(12):2508–2514CrossRefGoogle Scholar
  135. 135.
    Xia Y, Lu Y, Larock RC (2010) Ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized fatty alcohols. Polymer 51(1):53–61CrossRefGoogle Scholar
  136. 136.
    Beerthuis R, Rothenberg G, Shiju NR (2015) Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem 17(3):1341–1361CrossRefGoogle Scholar
  137. 137.
    Anitha M, Kamarudin SK, Kofli NT (2016) The potential of glycerol as a value-added commodity. Chem Eng J 295:119–130CrossRefGoogle Scholar
  138. 138.
    Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31(6):945–961CrossRefGoogle Scholar
  139. 139.
    Scala JL, Wool RP (2002) The effect of fatty acid composition on the acrylation kinetics of epoxidized triacylglycerols. J Am Oil Chem Soc 79(1):59–63CrossRefGoogle Scholar
  140. 140.
    Zhang P, Xin J, Zhang J (2014) Effects of catalyst type and reaction parameters on one-step acrylation of soybean oil. ACS Sustain Chem Eng 2(2):181–187CrossRefGoogle Scholar
  141. 141.
    Zhang P, Zhang J (2013) One-step acrylation of soybean oil (SO) for the preparation of SO-based macromonomers. Green Chem 15(3):641–645CrossRefGoogle Scholar
  142. 142.
    Kolot V, Grinberg S (2004) Vernonia oil–based acrylate and methacrylate polymers and interpenetrating polymer networks with epoxy resins. J Appl Polym Sci 91(6):3835–3843CrossRefGoogle Scholar
  143. 143.
    Salih A, Ahmad M, Ibrahim N, Dahlan K, Tajau R, Mahmood M, Yunus W (2015) Synthesis of radiation curable palm oil-based epoxy acrylate: NMR and FTIR spectroscopic investigations. Molecules 20(8):14191CrossRefGoogle Scholar
  144. 144.
    La Scala J, Wool RP (2005) Property analysis of triglyceride-based thermosets. Polymer 46(1):61–69CrossRefGoogle Scholar
  145. 145.
    Ahn BK, Sung J, Rahmani N, Wang G, Kim N, Lease K, Sun XS (2013) UV-curable, high-shear pressure-sensitive adhesives derived from acrylated epoxidized soybean oil. J Adhes 89(4):323–338CrossRefGoogle Scholar
  146. 146.
    Pelletier H, Belgacem N, Gandini A (2006) Acrylated vegetable oils as photocrosslinkable materials. J Appl Polym Sci 99(6):3218–3221CrossRefGoogle Scholar
  147. 147.
    Zhang C, Yan M, Cochran EW, Kessler MR (2015) Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin. Mater Today Commun 5:18–22CrossRefGoogle Scholar
  148. 148.
    Dai J, Jiang Y, Liu X, Wang J, Zhu J (2016) Synthesis of eugenol-based multifunctional monomers via a thiol-ene reaction and preparation of UV curable resins together with soybean oil derivatives. RSC Adv 6(22):17857–17866CrossRefGoogle Scholar
  149. 149.
    Okada S, Matyjaszewski K (2014) Synthesis of bio-based poly(N-phenylitaconimide) by atom transfer radical polymerization. J Polym Sci Part A Polym Chem 53:822–827CrossRefGoogle Scholar
  150. 150.
    Ma Q, Liu X, Zhang R, Zhu J, Jiang Y (2013) Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chem 15(5):1300–1310CrossRefGoogle Scholar
  151. 151.
    Jang NR, Kim HR, Hou CT, Kim BS (2013) Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate. Polym Adv Technol 24(9):814–818CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC)KarlsruheGermany

Personalised recommendations