Journal of the American Oil Chemists' Society

, Volume 93, Issue 10, pp 1393–1397

Eco-friendly Pretreatment of Oil with High Free Fatty Acid Content Using a Sulfamic Acid/Ethanol System

  • Patrick Martins de Oliveira
  • Luana Machado Farias
  • Joaquín A. Morón-Villarreyes
  • Marcelo G. Montes D’Oca
Original Paper
  • 176 Downloads

Abstract

In recent years, sulfamic acid (SA, NH2SO3H) has emerged as a novel green catalyst for organic synthesis because of several advantages, including its non-volatility, non-hygroscopicity, non-corrosivity, and low cost. This work reports the use of sulfamic acid as a catalyst in the pretreatment of oil with a high content of free fatty acids (10 and 20 % FFA) in ethanol or methanol. The process (esterification reaction) used in the pretreatment of the oil was carried out under a variety of conditions, initial fatty acid content, temperature, type of alcohol, and  % catalyst. The experiments using an NH2SO3H/ethanol system resulted in a high fatty acid ethyl ester conversion, 88.53 % (±0.95) from an initial acidity of 40 mg KOH/g (20 % FFA), using 8 % NH2SO3H as the catalyst. According to the results, the methodology using sulfamic acid and ethanol demonstrated elevated potential for a environmentally-friendly means of biodiesel production.

Keywords

Pretreatment Low-cost feedstock Free fatty acids Biodiesel Esterification Sulfamic acid Green catalyst 

References

  1. 1.
    Kumar RS, Nagarajan R, Vijay K, Perumal PT (2005) Sulfamic acid: an efficient catalyst for the diastereoselective, one-pot synthesis of pyrano benzopyrans, furano benzopyrans and ethoxy benzopyrans. Lett Org Chem 2:458–460CrossRefGoogle Scholar
  2. 2.
    Shetty MR, Samant SD (2012) Sulfamic acid (H2NSO3H): a low-cost, mild, and efficient catalyst for the synthesis of substituted n-phenylpyrazoles under solvent-free conditions. Synth Commun 42:1411–1418CrossRefGoogle Scholar
  3. 3.
    Xia M, Lu YD (2006) A novel direct and one-pot Mannich synthesis of fluorinated beta-aminobutanones with sulfamic acid as a green catalyst. J Fluor Chem 127:1119–1124CrossRefGoogle Scholar
  4. 4.
    Xia M, Wu B, Xiang GF (2008) Sulfamic acid as an effective catalyst in solvent-free synthesis of beta-enaminoketone derivatives and X-ray crystallography of their representatives. Synth Commun 38:1268–1278CrossRefGoogle Scholar
  5. 5.
    Zhang ZX, Ma BC, Zhu QQ, Ding Y, Wang CM, Song WF (2012) Sulfamic acid as a cost-effective catalyst for synthesis of alpha-acyloxyacrylate esters as candidate monomers for biobased polymers by acylation of pyruvate esters. Synth Commun 42:3053–3060CrossRefGoogle Scholar
  6. 6.
    Wang B, Gu YL, Song GY, Yang T, Yang LM, Suo JS (2005) An efficient procedure for protection of carbonyls catalyzed by sulfamic acid. J Mol Catal A-Chem 233:121–126CrossRefGoogle Scholar
  7. 7.
    Upadhyaya DJ, Barge A, Stefania R, Cravotto G (2007) Efficient, solventless N-Boc protection of amines carried out at room temperature using sulfamic acid as recyclable catalyst. Tetrahedron Lett 48:8318–8322CrossRefGoogle Scholar
  8. 8.
    Sheldon RA, Downing RS (1999) Heterogeneous catalytic transformations for environmentally friendly production. Appl Catal A 189:163–183CrossRefGoogle Scholar
  9. 9.
    Wang B (2005) Sulfamic acid: a very useful catalyst. Synlett 8:1342–1343CrossRefGoogle Scholar
  10. 10.
    Harbison GS, Kye YS, Penner GH, Grandin M, Monette MJ (2002) N-14 quadrupolar, 14 N and N-15 chemical shift, and N-14-H-1 dipolar tensors of sulfamic acid. Phys Chem B 106:10285–10291CrossRefGoogle Scholar
  11. 11.
    Sisler HH, Butler MJ, Audrieth LF (1946) Sulfamic acid. Inorg Synth 2:176–179Google Scholar
  12. 12.
    D’Oca MGM, Haertel PL, de Moraes DC, Callegaro FJP, Kurz MHS, Primel EG, Clementin RM, Moron-Villarreyes JA (2012) Base/acid-catalyzed FAEE production from hydroxylated vegetable oils. Fuel 90:912–916Google Scholar
  13. 13.
    Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  14. 14.
    Supple B, Howard-Hildige R, Gonzalez-Gomez E, Leahy JJ (2002) The effect of steam treating waste cooking oil on the yield of methyl ester. J Am Oil Chem Soc 79:175–178CrossRefGoogle Scholar
  15. 15.
    Chisti Y (2007) Biodiesel From Microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  16. 16.
    D’Oca MGM, Viegas CV, Lemoes JS, Miyasaki EK, Moron-Villarreyes JA, Primel EG, Abreu PC (2011) Production of FAME from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenerg 35:1533–1538CrossRefGoogle Scholar
  17. 17.
    Moron-Villarreyes JA, Soldi C, Amorim AM, Pizzolatti MG, Mendonca AP, D’Oca MGM (2007) Diesel/biodiesel proportion for by-compression ignition engines. Fuel 86:1977–1982CrossRefGoogle Scholar
  18. 18.
    Bozbas K (2008) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sust Energ Rev 12:542–552CrossRefGoogle Scholar
  19. 19.
    Haas MJ (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86:1087–1096CrossRefGoogle Scholar
  20. 20.
    Veljkovic VB, Lakicevic SH, Stamenkovic OS, Todorovic ZB, Lazic ML (2006) Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85:2671–2675CrossRefGoogle Scholar
  21. 21.
    Lotero E, Liu YJ, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363CrossRefGoogle Scholar
  22. 22.
    Soriano NU, Venditti R, Argyropoulos DS (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88:560–565CrossRefGoogle Scholar
  23. 23.
    Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436CrossRefGoogle Scholar
  24. 24.
    Alptekin E, Canakci M (2010) Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel 89:4035–4039CrossRefGoogle Scholar
  25. 25.
    Bianchi CL, Boffito DC, Pirola C, Ragaini V (2010) Low temperature de-acidification process of animal fat as a pre-step to biodiesel production. Catal Lett 134:179–183CrossRefGoogle Scholar
  26. 26.
    Boffito DC, Pirola C, Galli F, Di Michele A, Bianchi CL (2013) Free fatty acids esterification of waste cooking oil and its mixtures with rapeseed oil and diesel. Fuel 108:612–619CrossRefGoogle Scholar
  27. 27.
    Boffito DC, Galli F, Pirola C, Bianchi CL, Patience GS (2014) Ultrasonic free fatty acids esterification in tobacco and canola oil. Ultrason Sonochem 21:1969–1975CrossRefGoogle Scholar
  28. 28.
    Ong HR, Khan MR, Chowdhury MNK, Yousuf A, Cheng CK (2014) Synthesis and characterization of CuO/C catalyst for the esterification of free fatty acid in rubber seed oil. Fuel 120:195–201CrossRefGoogle Scholar
  29. 29.
    Zhang MH, Sun AX, Meng YL, Wang LT, Jiang HX, Li GM (2015) High activity ordered mesoporous carbon-based solid acid catalyst for the esterification of free fatty acids. Microporous Mesoporous Mater 204:210–217CrossRefGoogle Scholar
  30. 30.
    D’Oca MGM, Soares RM, de Moura RR, Granjao VD (2012) Sulfamic acid: an efficient acid catalyst for esterification of FFA. Fuel 97:884–886CrossRefGoogle Scholar
  31. 31.
    ASTM D 664-11a (2011) Standard test method for acid number of petroleum products by potentiometric titration. ASTM International, West Conshohocken, PAGoogle Scholar
  32. 32.
    Notley JM (1973) The hydrolysis rate of sulphamic acid. J Appl Chem Biotechnol 23:717–723CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Patrick Martins de Oliveira
    • 1
  • Luana Machado Farias
    • 1
  • Joaquín A. Morón-Villarreyes
    • 1
  • Marcelo G. Montes D’Oca
    • 1
  1. 1.Laboratório Kolbe de Síntese Orgânica, Escola de Química e Alimentos, Programa de Pós-Graduação em Química Tecnológica e AmbientalUniversidade Federal do Rio Grande-FURGRio GrandeBrazil

Personalised recommendations