Journal of the American Oil Chemists' Society

, Volume 93, Issue 10, pp 1399–1406 | Cite as

Synthesis of Fatty Acetoacetates Under Microwave Irradiation Catalysed by Sulfamic Acid in a Solvent-Free System

  • Andressa C. H. Weber
  • Thaís C. Batista
  • Bruno Gonçalves
  • Carolina R. L. Hack
  • Larissa M. Porciuncula
  • Tamara G. M. Treptow
  • Caroline Da R. Montes D’Oca
  • Dennis Russowsky
  • Marcelo G. Montes D’Oca
Original Paper

Abstract

The 1,3-dicarbonyl compounds are important building blocks to obtain products with various biological activities and technological applications. In this work, we used a simple transesterification method to develop fatty acetoacetates in a solvent-free medium using a green catalyst, sulfamic acid (NH2SO3H), under microwave irradiation. The experimental results demonstrate good yields in a short reaction time (13 min), which makes this method an efficient approach to synthesize fatty acetoacetates from a wide range of saturated, unsaturated, and polyunsaturated long chain fatty alcohols, and ricinoleic derivatives. Experiments of recycling of the catalyst were performed and no decrease in catalytic activity of sulfamic acid was observed.

Keywords

Castor oil Renewable resources Transesterification reaction 1,3-dicarbonyl compounds Microwave-assisted 

Supplementary material

11746_2016_2879_MOESM1_ESM.doc (5.5 mb)
Supplementary material 1 (DOC 5581 kb)

References

  1. 1.
    Koizumi T, Sakamoto J, Gondo Y, Endo T (2002) Pd(0)-Catalyzed polyaddition of bifunctional vinyloxiranes with 1,3-dicarbonyl compounds: the synthesis of polymers containing hydroxyl and carbonyl groups. J Polym Sci Part A Polym Chem 40:2487–2494CrossRefGoogle Scholar
  2. 2.
    Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery ‘from xylocaine to crixivan’. Curr Med Chem 10:51–80CrossRefGoogle Scholar
  3. 3.
    Touré BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486CrossRefGoogle Scholar
  4. 4.
    Cao L, Wang J, Liu K, Han S (2014) Ethyl acetoacetate: a potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil. Appl Energy 114:18–21CrossRefGoogle Scholar
  5. 5.
    Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley-VCH Publishing, WeinheimCrossRefGoogle Scholar
  6. 6.
    Treptow TGM, Figueiró F, Jandrey EHF, Battastini AMO, Salbego CG, Hoppe JB, Taborda PS, Rosa SB, Piovesan LA, D’Oca CRM, Russowsky D, D’Oca MGM (2015) Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth in vitro. Eur J Med Chem 95:552–562CrossRefGoogle Scholar
  7. 7.
    Liu L, Sarkisian R, Deng Y, Wang H (2013) Sc(OTf)3-Catalyzed Three component cyclization of arylamines β, γ-unsaturated α-ketoesters, and 1,3-dicarbonyl compounds for the synthesis of highly substituted 1,4-dihydropyridines and tetrahydropyridines. J Org Chem 78:5751–5755CrossRefGoogle Scholar
  8. 8.
    Russowsky D, Canto RFS, Sanches SAA, D’Oca MGM, Fátima A, Pilli RA, Konhn LK, Antônio MA, Carvalho JE (2006) Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg Chem 34:173–182CrossRefGoogle Scholar
  9. 9.
    Crespo A, El Maatougui A, Biagini P, Azuaje J, Coelho A, Brea J, Loza MI, Cadavid MI, Garcia-Mera X, Gutierrez-de-Teran H, Sotelo E (2013) Discovery of 3,4-dihydropyrimidin-2(1H)-ones as a novel class of potent and selective A2B adenosine receptor antagonists. ACS Med Chem Lett 4:1031–1036CrossRefGoogle Scholar
  10. 10.
    Bonne D, Coquerel Y, Constantieux T, Rodriguez J (2010) 1,3-Dicarbonyl compounds in stereoselective domino and multicomponent reactions. Tetrahedron Asymm 21:1085–1109CrossRefGoogle Scholar
  11. 11.
    Cioc RC, Ruijterand E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975CrossRefGoogle Scholar
  12. 12.
    Koval KLI, Dzyuba VI, Ilnitska OL, Pekhnyo VI (2008) Efficient transesterification of ethyl acetoacetate with higher alcohols without catalysts. Tetrahedron Lett 49:1645–1648CrossRefGoogle Scholar
  13. 13.
    Heravi MM, Baghernejad B, Oskooie HA (2009) Application of sulfamic acid in organic synthesis—a short review. Curr Org Chem 13:1002–1014CrossRefGoogle Scholar
  14. 14.
    Sathicq G, Musante L, Romanelli G, Pasquale G, Autino J, Thomas H, Vazquez P (2008) Transesterification of β-ketoesters catalyzed by hybrid materials based on silica sol-gel. Catal Today 133:455–460CrossRefGoogle Scholar
  15. 15.
    Mhasni O, Rezgui F (2011) The first Et3N-mediated transesterifications of β-keto esters using Baylis & Hillman alcohols. Tetrahedron 67:6322–6326CrossRefGoogle Scholar
  16. 16.
    Kondaiah GCM, Reddy LA, Babu KS, Gurav VM, Huge KG, Bandichhor R, Reddy PP, Bhattacharya A, Anand RV (2008) Boric acid: and efficient and environmentally benign catalyst for transesterification of ethyl acetoacetate. Tetrahedron Lett 49:106–109CrossRefGoogle Scholar
  17. 17.
    Yadav JS, Reddy BVS, Krishna AD, Reddy CS, Narsaiah AV (2007) Triphenylphosphine: an efficient catalyst for transesterification of β-ketoesters. J Mol Catal A Chem 261:93–97CrossRefGoogle Scholar
  18. 18.
    Loupy ACR (2004) Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. Chim 7:103–112CrossRefGoogle Scholar
  19. 19.
    Rao GBD, Acharya BN, Kaushik MP (2013) An efficient synthesis of β-ketoesters via transesterification and its application in Biginelli reaction under solvent-free, catalyst-free conditions. Tetrahedron Lett 54:6644–6647CrossRefGoogle Scholar
  20. 20.
    Wang B, Yang LM, Shuan SJ (2003) Ionic liquid-regulated sulfamic acid: chemoselective catalyst for the transesterification of β-ketoesters. Tetrahedron Lett 44:5037–5039CrossRefGoogle Scholar
  21. 21.
    Wisniewska C, Koszelewski D, Zysk M, Klossowski S, Zadlo A, Brodzka A, Ostaszewski R (2015) Enzymatic synergism in the synthesis of β-keto esters. Eur J Org Chem 24:5432–5437CrossRefGoogle Scholar
  22. 22.
    Cordova A, Janda KD (2001) A highly chemo and stereoselective synthesis of β-keto esters via a polymer-supported lipase catalyzed transesterfication. J Org Chem 66:1906–1909CrossRefGoogle Scholar
  23. 23.
    Jin TS, Sun G, Li YW, Li TS (2002) An efficient and convenient procedure for the preparation of 1,1-diacetates form aldehydes catalyzed by H2NSO3H. Green Chem 4:255–256CrossRefGoogle Scholar
  24. 24.
    Rostami A, Ahmad-Jangi F (2011) Sulfamic acid: an efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free. Chin Chem Lett 22:1029–1032CrossRefGoogle Scholar
  25. 25.
    Wang B (2005) Sulfamic Acid: a very useful catalyst. Synlett 8:1342–1343CrossRefGoogle Scholar
  26. 26.
    Darabi HR, Mohandessi S, Aghapoor K, Mohsenzadeh F (2007) A recyclable and highly effective sulfamic acid/MeOH catalytic system for the synthesis of quinoxalines at room temperature. Catal Commun 8:389–392CrossRefGoogle Scholar
  27. 27.
    Zhang ZH, Li TS, Li J (2007) A highly effective sulfamic acid/methanol catalytic system for the synthesis of benzimidazole derivatives at room temperature. J Mon Chem 138:89–94CrossRefGoogle Scholar
  28. 28.
    Rostami A, Tavakoli A (2011) Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chin Chem Lett 22:1317–1320CrossRefGoogle Scholar
  29. 29.
    Li JP, Qiu JK, Li HJ, Zhang GS (2011) An efficient, three-component one-pot preparation of 1,4-dihydropyridines containing novel substituted pyrazole under sulfamic acid catalysis. Chin J Chem 29:511–514CrossRefGoogle Scholar
  30. 30.
    Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH Publishing, WeinheimCrossRefGoogle Scholar
  31. 31.
    Madhav JV, Kumar VN, Rajitha B (2008) Sulfamic acid-catalyzed one-pot synthesis of 3-(4,6-dimethyl-oxazolo[4,5-c]quinolin-2-yl)-chromen-2-ones using the conventional method and microwave irradiation. Synth Commun 38:1799–1807CrossRefGoogle Scholar
  32. 32.
    Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRefGoogle Scholar
  33. 33.
    Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41:629–639CrossRefGoogle Scholar
  34. 34.
    Lindstrom P, Tierney J, Wathey B, Westman J (2002) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283CrossRefGoogle Scholar
  35. 35.
    Ranu BC, Saha A, Jana R (2007) Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl-sulfur bond formation. Adv Synth Catal 349:2690–2696CrossRefGoogle Scholar
  36. 36.
    Brinkerhoff RC, Fontecha-Tarazona HD, de Oliveira PM, Flores DC, D’Oca CRM, Russowsky D, D’Oca MGM (2014) Synthesis of β-ketoesters from renewable resources and Meldrum’s acid. RSC Adv 4:49556–49559CrossRefGoogle Scholar
  37. 37.
    Rodrigues MO, Cantos JB, D’Oca CRM, Soares KL, Coelho TS, Piovesan LA, Russowsky D, da Silva PA, D’Oca MGM (2013) Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids. Bioorg Med Chem 21:6910–6914CrossRefGoogle Scholar
  38. 38.
    D’Oca CRM, Coelho T, Marinho TG, Hack CRL, Duarte RC, da Silva PA, D’Oca MGM (2010) Synthesis and antituberculosis activity of new fatty acid amides. Bioorg Med Chem Lett 20:5255–5257CrossRefGoogle Scholar
  39. 39.
    Duarte RC, Ongaratto R, Piovesan LA, de Lima VR, Soldi V, Merlo AA, D’Oca MGM (2012) New N-acylamino acids and derivatives from renewable fatty acids: gelation of hydrocarbons and thermal properties. Tetrahedron Lett 53:2454–2460CrossRefGoogle Scholar
  40. 40.
    dos Santos DS, Piovesan LA, D’Oca CRM, Hack CRL, Treptow TGM, Rodrigues MO, Vendramini-Costa DB, Ruiz ALTG, de Carvalho JE, D’Oca MGM (2015) Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorg Med Chem 23:340–347CrossRefGoogle Scholar
  41. 41.
    D’Oca MGM, Soares RM, Moura RR, Granjão VF (2012) Sulfamic acid: an efficient acid catalyst for esterification of FFA. Fuel 97:884–886CrossRefGoogle Scholar
  42. 42.
    Brown HC, Krishnamurthy S (1979) Forty years of hydride reductions. Tetrahedron 35:567–607CrossRefGoogle Scholar
  43. 43.
    Wang X, Li X, Xue J, Zhao Y, Zhang Y (2009) A novel and efficient procedure for the preparation of allylic alcohols from α-β-unsaturated carboxylic esters using LiAlH4/BnCl. Tetrahedron Lett 50:413–415CrossRefGoogle Scholar
  44. 44.
    Lakshminarayana G, Paulose MM, Kumari NB (1984) Characteristics and composition of newer varieties of Indian castor seed and oil. J Am Oil Chem Soc 61:1871–1872CrossRefGoogle Scholar
  45. 45.
    Lopes CR, D’Oca CRM, Duarte RC, Kurz MHS, Primel EG, Clementin RM, Villarreyes JAM, D’Oca MGM (2010) Síntese de novas amidas graxas a partir da aminólise de ésteres metílicos. Quim Nova 33:1335–1341CrossRefGoogle Scholar
  46. 46.
    Mhasni O, Erray I, Rezgui F (2014) General and efficient transesterification of β-keto esters with various alcohols using Et3N as a change by Brønsted base additive. Synt Comm 44:3320–3327CrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Andressa C. H. Weber
    • 1
  • Thaís C. Batista
    • 1
  • Bruno Gonçalves
    • 1
  • Carolina R. L. Hack
    • 1
  • Larissa M. Porciuncula
    • 1
  • Tamara G. M. Treptow
    • 1
  • Caroline Da R. Montes D’Oca
    • 2
  • Dennis Russowsky
    • 2
  • Marcelo G. Montes D’Oca
    • 1
  1. 1.Laboratório Kolbe de Síntese Orgânica, Escola de Química e AlimentosUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Laboratório de Sínteses Orgânicas, Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations