Journal of the American Oil Chemists' Society

, Volume 93, Issue 3, pp 431–443 | Cite as

Role of Promoters on the Acrolein Ammoxidation Performances of BiMoOx

  • Ajay Ghalwadkar
  • Benjamin Katryniok
  • Sébastien Paul
  • Anne-Sophie Mamede
  • Franck Dumeignil
Original Paper


Ammoxidation of acrolein to acrylonitrile was studied using multicomponent (MC) BiMoOx catalysts in the presence of ammonia and oxygen. The MC catalysts containing bivalent and trivalent metal promoters were found to be highly active and selective to acrylonitrile. The corresponding MC catalysts were characterized by X-ray diffraction, nitrogen physisorption, X-ray photoelectron spectroscopy, ICP-MS and UV–visible diffuse reflectance spectroscopy. It was observed that, among the bivalent cations, the catalysts containing both Co–Ni showed superior performances due to the presence of the metastable β-CoxNi1−xMoO4 phase. The presence of a trivalent cation, and especially of iron, promoted the formation of both the γ-Bi2MoO6 active phase and the active β-phase of bivalent metal molybdate. Further, optimization of the reaction conditions enabled the achievement of a 59 % acrylonitrile yield.


Glycerol Ammoxidation Multicomponent catalysts Acrolein Acrylonitrile 


  1. 1.
  2. 2.
    OECD-FAO Agricultural Outlook 2011–2020.
  3. 3.
    Katryniok B, Paul S, Dumeignil F (2013) Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal 3(8):1819–1834CrossRefGoogle Scholar
  4. 4.
    Guerrero-Perez MO, Banares MA (2008) New reaction: conversion of glycerol into acrylonitrile. ChemSusChem 1(6):511–513CrossRefGoogle Scholar
  5. 5.
    Liebig C, Paul S, Katryniok B, Guillon C, Couturier J-L, Dubois J-L, Dumeignil F, Hoelderich WF (2013) Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe, V)-O. Appl Catal B 132–133:170–182CrossRefGoogle Scholar
  6. 6.
    Bradzil JF (2000) Acrylonitrile. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.0103182502180126.a01.pub3 Google Scholar
  7. 7.
    Knox W, Taylor K, Tullman G (1974) Ammoxidation of saturated hydrocarbons. US-patent US3833638AGoogle Scholar
  8. 8.
    Dubois J-L (2008) Method for the synthesis of acrylonitrile from glycerol. US-patent US20100048850A1Google Scholar
  9. 9.
    Liebig C, Paul S, Katryniok B, Guillon C, Couturier J-L, Dubois J-L, Dumeignil F, Hoelderich WF (2014) Reply to the Letter to the Editor concerning the comments of M.A. Banares and M.O. Guerrero-Pérez to the article “Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe, V)-O”. Appl Catal B 148–149:604–605CrossRefGoogle Scholar
  10. 10.
    Bañares MA, Guerrero-Pérez MO (2014) Comments on “Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb–(Fe, V)–O”. Appl Catal B 148–149:601–603CrossRefGoogle Scholar
  11. 11.
    Vanderborght H (1963) Procédé de préparation de nitriles non saturés. Belgium Patent BE 628287Google Scholar
  12. 12.
    Oka H, Miyake K, Haranoa Y, Imoto T (1975) J Appl Chem Biotechnol 25:663–670CrossRefGoogle Scholar
  13. 13.
    Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysis. Catal Today 49(1–3):141–153CrossRefGoogle Scholar
  14. 14.
    Kung HH, Kung MC (1985) Selective oxidative dehydrogenation of butenes on ferrite catalysts. Adv Catal 33:159–198Google Scholar
  15. 15.
    Moro-Oka Y, Ueda W (1994) Multicomponent bismuth molybdate catalyst: a highly functionalized catalyst system for the selective oxidation of olefin. Adv Catal 40:233–273Google Scholar
  16. 16.
    Gunter S, Joachim K, Kurt S, Rolf S, Wilhelm V (1965) Process for preparing unsaturated nitriles. US-patent US3226422Google Scholar
  17. 17.
    Takenaka S, Yamaguchi G (1969) Process for the oxidation of olefins to aldehydes and acids. US-patent US3454630AGoogle Scholar
  18. 18.
    Idol JJ (1973) Process for the manufacture of acrylonitrile and methacrylonitrile. US-patent US2904580 AGoogle Scholar
  19. 19.
    Kolchin I, Galperin E, Bobkov S, Margolis LY (1964) Oxidation of propylene on a bismuth-molybdenum catalyst. Neftekhimiya 4:301Google Scholar
  20. 20.
    German K, Grzybowka B, Haber J (1973) Active centers for oxidation of propylene on Bi-Mo-O catalysts. Bull Acad Pol Sci Ser Sci Chim 21:319Google Scholar
  21. 21.
    Monnier JR, Keulks GW (1979) Am Chem Soc Div Pet Chem 24:19Google Scholar
  22. 22.
    Burrington JD, Grasselli RK (1979) Aspects of selective oxidation and ammoxidation mechanisms over bismuth molybdate catalysts. J Catal 59(1):79–99CrossRefGoogle Scholar
  23. 23.
    Carson D, Coudurier G, Forissier M, Vedrine JC, Laarif A, Theobald F (1983) Synergy effects in the catalytic properties of bismuth molybdates. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 79(8):1921–1929Google Scholar
  24. 24.
    Maione A, Devillers M (2004) Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol–gel and citrate methods. J Solid State Chem 177(7):2339–2349CrossRefGoogle Scholar
  25. 25.
    Ono T, Ogata N, Miyaryo Y (1996) Characteristic features of Raman band shifts of scheelite-type molybdate catalysts exchanged with the 18O tracer via redox reactions. J Catal 161(1):78–86CrossRefGoogle Scholar
  26. 26.
    Maldonado-Hódar FJ, Palma Madeira LM, Farinha Portela M (1996) The effects of coke deposition on NiMoO4 used in the oxidative dehydrogenation of butane. J Catal 164(2):399–410CrossRefGoogle Scholar
  27. 27.
    Mazzocchia C, Aboumrad C, Diagne C, Tempesti E, Herrmann J, Thomas G (1991) On the NiMoO4 oxidative dehydrogenation of propane to propene: some physical correlations with the catalytic activity. Catal Lett 10(3–4):181–191CrossRefGoogle Scholar
  28. 28.
    Batist PA, van de Moesdijk CGM, Matsuura I, Schuit GCA (1971) The catalytic oxidation of 1-butene over bismuth molybdates: promoters for the Bi2O3·3MoO3 catalyst. J Catal 20(1):40–57CrossRefGoogle Scholar
  29. 29.
    Harrison WTA (1995) Crystal structures of paraelastic aluminum molybdate and ferric molybdate, β-Al2(MoO4)3 and β-Fe2(MoO4)3. Mater Res Bull 30(11):1325–1331CrossRefGoogle Scholar
  30. 30.
    Battle PD, Cheetham AK, Harrison WTA, Pollard NJ, Faber J Jr (1985) The structure and magnetic properties of chromium(III) molybdate. J Solid State Chem 58(2):221–225CrossRefGoogle Scholar
  31. 31.
    Carrazan S, Martin C, Rives V, Vidal R (1996) An FT-IR spectroscopy study of the adsorption and oxidation of propene on multiphase Bi, Mo and Co catalysts. Spectrochim Acta Part A Mol Biomol Spectrosc 52(9):1107–1118CrossRefGoogle Scholar
  32. 32.
    Wolfs MWJ, Batist PHA (1974) The selective oxidation of 1-butene over a multicomponent molybdate catalyst. Influences of various elements on structure and activity. J Catal 32(1):25–36CrossRefGoogle Scholar
  33. 33.
    Giordano N, Padovan M, Vaghi A, Bart JCJ, Castellan A (1975) Structure and catalytic activity of MoO3·Al2O3 systems: III. Nature of sites for propylene disproportionation. J Catal 38(1–3):1–10CrossRefGoogle Scholar
  34. 34.
    Smith G, Ibers J (1965) The crystal structure of cobalt molybdate CoMoO4. Acta Crystallogr A 19(2):269–275CrossRefGoogle Scholar
  35. 35.
    Zhou C-J, Huang C-J, Zhang W-G, Zhai H-S, Wu H-L, Chao Z-S (2007) Synthesis of micro- and mesoporous ZSM-5 composites and their catalytic application in glycerol dehydration to acrolein. Stud Surf Sci Catal 165:527–530CrossRefGoogle Scholar
  36. 36.
    Zhang YJ, Rodrı́guez-Ramos I, Guerrero-Ruiz A (2000) Oxidative dehydrogenation of isobutane over magnesium molybdate catalysts. Catal Today 61(1–4):377–382CrossRefGoogle Scholar
  37. 37.
    Matsuura I, Wolfs MWJ (1975) X-ray photoelectron spectroscopy study of some bismuth molybdates and multicomponent molybdates. J Catal 37(1):174–178CrossRefGoogle Scholar
  38. 38.
    Uchida K, Ayame A (1996) Dynamic XPS measurements on bismuth molybdate surfaces. Surf Sci 357–358:170–175CrossRefGoogle Scholar
  39. 39.
    Armour AW, Mitchell PCH, Folkesson B, Larsson R (1974) X-ray photoelectron (ESCA) spectra of some molybdenum-containing catalysts. J Less Common Metals 36(1–2):361–365CrossRefGoogle Scholar
  40. 40.
    Kaddouri A, Tempesti E, Mazzocchia C (2004) Comparative study of β-nickel molybdate phase obtained by conventional precipitation and the sol–gel method. Mater Res Bull 39(4–5):695–706CrossRefGoogle Scholar
  41. 41.
    Soares APV, Portela MF, Kiennemann A, Hilaire L (2003) Mechanism of deactivation of iron-molybdate catalysts prepared by coprecipitation and sol–gel techniques in methanol to formaldehyde oxidation. Chem Eng Sci 58(7):1315–1322CrossRefGoogle Scholar
  42. 42.
    Coulter KE, Sault AG (1995) Effects of activation on the surface properties of silica-supported cobalt catalysts. J Catal 154(1):56–64CrossRefGoogle Scholar
  43. 43.
    Rao TSRP, Menon PG (1978) Physicochemical studies on silica-supported multicomponent molybdate catalyst before and after use in ammoxidation of propylene. J Catal 51(1):64–71CrossRefGoogle Scholar
  44. 44.
    Grasselli RK, Burrington JD (1981) Selective oxidation and ammoxidation of propylene by heterogeneous catalysis. Adv Catal 30:133–163Google Scholar
  45. 45.
    Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Effect of oxygen capacity and oxygen mobility of pure bismuth molybdate and multicomponent bismuth molybdate on their catalytic performance in the oxidative dehydrogenation of n-butene to 1, 3-butadiene. Catal Lett 124(3–4):262–267CrossRefGoogle Scholar
  46. 46.
    Zakharov II, Popova GY, Andrushkevich TV (1982) Effect of molybdenum ion coordination on acrolein adsorption on α- and β-cobalt molybdate. React Kinet Catal Lett 19(3–4):367–371CrossRefGoogle Scholar
  47. 47.
    Haber J, Witko M (1981) Quantum-chemistry and catalysis in oxidation of hydrocarbons. Acc Chem Res 14(1):1–7CrossRefGoogle Scholar
  48. 48.
    Wood B (1962) Production of unsaturated aliphatic nitriles. US-patent US3094552 AGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Ajay Ghalwadkar
    • 1
  • Benjamin Katryniok
    • 1
  • Sébastien Paul
    • 1
  • Anne-Sophie Mamede
    • 1
  • Franck Dumeignil
    • 1
    • 2
    • 3
  1. 1.CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du SolideUniv. LilleLilleFrance
  2. 2.IUF, Maison des UniversitésParisFrance
  3. 3.Unité de Catalyse et Chimie du Solide (UCCS)Université Lille 1, Sciences et TechnologiesVilleneuve d’Ascq CedexFrance

Personalised recommendations