Journal of the American Oil Chemists' Society

, Volume 92, Issue 11–12, pp 1555–1565 | Cite as

Determination of Acylglycerols and Glycerol in Castor:Soybean Biodiesel Blend Produced by a Base/Acid-Catalyzed Process

  • Renata Rodrigues de Moura
  • Adriana Neves Dias
  • Vinícius de Freitas Granjão
  • Ednei Gilberto Primel
  • Marcelo Gonçalves Montes D’Oca
Original Paper

Abstract

This paper describes the production of the methyl biodiesel blend of hydroxylated vegetable (castor oil) and soybean oils by a base/acid-catalyzed process and the first simultaneous determination by gas chromatography of the levels of total and free glycerol, mono-, di- and triacylglycerols based on the standard method ASTM D 6584. Best results were observed for transesterification carried out in 6:1 (methanol:oil), sodium hydroxide 1 % w/w at 60 °C for 1.5 h. The analytical method not only produced curves with good linearity, but also had a coefficient of determination (r2) above 0.997 and accuracy between 70 and 141 % at relative standard deviations (RSD) lower than 10 %. The matrix effect (ME) was investigated and only diolein was found to have a significant matrix effect. The method was robust when applied to different chemical compositions of biodiesel. Results showed that the acid value and the contents of mono-, di-, and triacylglycerols, total and free glycerol were within the limits set by standardized methods and that biodiesel may be produced from soybean and castor oil blends.

Keywords

Acylglycerols Biodiesel blend Castor oil Total glycerol Transesterification reaction 

References

  1. 1.
    Hoekman SK, Broch A, Cericeros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169CrossRefGoogle Scholar
  2. 2.
    Knothe G (2008) Manual de Biodiesel. In: Van Gerpen J, Krahl J, Ramos LP (eds) Knothe G. Edgard Blücher, São PauloGoogle Scholar
  3. 3.
    Morón-Villarreyes JA, Soldi C, Amorim AM, Pizzolatti MG, Mendonça AP Jr, D’Oca MGM (2007) Diesel/biodiesel proportion for by-compression ignition engines. Fuel 86(12):1977–1982CrossRefGoogle Scholar
  4. 4.
    MDA Ministério do Desenvolvimento Agrário (2014) Programa Nacional de Produção e Uso de Biodiesel (PNPB). http://www.mda.gov.br/portal/saf/arquivos/view/biodiesel/arquivos-2011/Biodiesel_Book_final_Low_Completo.pdf>. Accessed Sept 2014
  5. 5.
    BRASIL, Lei n. 13.033, de 24 de setembro de (2014) Dispõe sobre a adição obrigatória de biodiesel ao óleo diesel comercializado com o consumidor final, Brasília, 2014. Poder legislativo, 185: 3Google Scholar
  6. 6.
    ANP Agencia Nacional do Petróleo, Gás Natural e Biocombustíveis (2015) Biodiesel–Introdução. http://www.anp.gov.br/?pg=60468&m=&t1=&t2=&t3=&t4=&ar=&ps=&cachebusc=1344280031280. Accessed Mar 2015
  7. 7.
    Goodrum JW, Geller DP (2005) Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity. Bioresour Technol 96:851–855CrossRefGoogle Scholar
  8. 8.
    Canoira L, Galeán JG, Alcántara R, Lapuerta M, Contreras RG (2010) Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties. Renew Energ 35:208–217CrossRefGoogle Scholar
  9. 9.
    Abramovay R (2009) Biocombustiveis: a energia da controvérsia. Senac, São Paulo, pp 59–97Google Scholar
  10. 10.
    Albuquerque MCG, Machado YL, Torres AEB, Azevedo DCS, Cavalcante CL Jr, Firmiano LR, Parente EJS Jr (2009) Properties of biodiesel oils formulated using different biomass sources and their blends. Renew Energ 34:857–859CrossRefGoogle Scholar
  11. 11.
    Scholz V, Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg 32(2):95–100CrossRefGoogle Scholar
  12. 12.
    D’Oca MGM, Haertel PL, Moraes DC, Callegaro FJP, Kurtz MHS, Primel EG, Clementin RM, Morón-Villarreyes JA (2011) Base/acid-catalyzed FAEE production from hydroxylated vegetable oils. Fuel 90:912–916CrossRefGoogle Scholar
  13. 13.
    Dabdoub MJ, Bronzel JL, Rampin MA (2009) Biodiesel: visão crítica do status atual e perspectivas na academia e na indústria. Quím Nova 32:776–792CrossRefGoogle Scholar
  14. 14.
    Schneider RCDS, Baldissarelli VZ, Trombetta F, Martinelli M, Caramão EB (2004) Optimization of gas chromatographic–mass spectrometric analysis for fatty acids in hydrogenated castor oil obtained by catalytic transfer hydrogenation. Anal Chim Acta 505:223–226CrossRefGoogle Scholar
  15. 15.
    Meneghetti SMP, Meneghetti MR, Wolf CR, Silva EC, Lima GES, Silva LL, Serra TM, Cauduro F, Oliveira LG (2006) Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energ Fuel 20:2262–2265CrossRefGoogle Scholar
  16. 16.
    Apita AO, Temu AK (2013) Investigation of the parameters affecting castor oil transesterification reaction kinetics for biodiesel production. Int J Sct Eng Res 4(3):1–5Google Scholar
  17. 17.
    Mittelbach M, Wörgetter M, Pernkopf J, Junek H (1983) Diesel fuel derived from vegetable oils, I: preparation and use of rapeseed-oil methyl esters. Energ Agr 2:369–384CrossRefGoogle Scholar
  18. 18.
    Cruz RS, Lôbo IP, Ferreira SLC (2009) Biodiesel: parâmetros de qualidade e métodos analíticos. Quím Nova 32:1596–1608CrossRefGoogle Scholar
  19. 19.
    ANP. Agencia Nacional do Petróleo, Gás Natural e Biocombustíveis (2015) RE no 45, DE 25.8.2014 http://nxt.anp.gov.br/nxt/gateway.dll/leg/resolucoes_anp/2012/maio/ranp%2014%20-%202012.xml. Acessed Mar 2015
  20. 20.
    ASTM D 6584 (2011) Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. American Society for Testing and Materials, PennsylvaniaGoogle Scholar
  21. 21.
    EN 14105 (2001) Fat and oil derivatives–Fatty acid methyl esters (FAME)-determination of free and total glycerol and mono-, di-, tri-glyceride contents–reference method. European Committee for Standardization, BrusselsGoogle Scholar
  22. 22.
    Barbosa DC, Serra TM, Meneghetti SMP, Meneghetti MR (2010) Biodiesel production by ethanolysis of mixed castor and soybean oils. Fuel 89:3791–3794CrossRefGoogle Scholar
  23. 23.
    ASTM D 664—11a (2011) Standard test method for acid number of petroleum products by potentiometric titration. American Society for Testing and Materials, PennsylvaniaGoogle Scholar
  24. 24.
    EN 14103 (2003) Fat and oil derivatives—fatty acid methyl esters (FAME)—determination of ester and linolenic acid methyl ester contents. European Committee for Standardization, BrusselsGoogle Scholar
  25. 25.
    Dias AN, Cerqueira MB, Moura RR, Kurz MHS, Clementin RM, D’Oca MGM, Primel EG (2012) Optimization of a method for the simultaneous determination of glycerides, free and total glycerol in biodiesel ethyl esters from castor oil using gas chromatography. Fuel 94:178–183CrossRefGoogle Scholar
  26. 26.
    Inmetro (Instituto Nacional De Metrologia, Normalização E Qualidade Industrial) (2010) DOQ-CGCRE-008: Orientação sobre validação de métodos analíticos. Revisão 03, Brasília, DFGoogle Scholar
  27. 27.
    Ribani M, Bottoli CBG, Collins CH, Jardim ICSF (2004) Validação em métodos cromatográficos e eletroforéticos. Quim Nova 27:771–780CrossRefGoogle Scholar
  28. 28.
    Pardo VL, Fagundes CAM, Caldas SS, Kurz MHS, Clementin RM, D’Oca MGM, Primel EG (2012) Development and validation of a method for the determination of fatty acid methyl ester contents in tung biodiesel and blends. J Am Oil Chem Soc 89:631–637CrossRefGoogle Scholar
  29. 29.
    Thomas TP, Birney DM, Auld DL (2013) Optimizing esterification of safflower, cottonseed, castor and used cottonseed oils. Ind Crop Prod 41:102–106CrossRefGoogle Scholar
  30. 30.
    Keera ST, El Sabagh SM, Taman AR (2011) Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel 90:42–47CrossRefGoogle Scholar
  31. 31.
    Plank C, Lorbeer E (1995) Simultaneous determination of glycerol, and mono-, di- and tri-glycerides in vegetable oil methyl esters by capillary gas chromatography. J Chromatogr A 697:461–468CrossRefGoogle Scholar
  32. 32.
    Knapp DR (1979) Handbook of analytical derivatization reactions. Wiley, New YorkGoogle Scholar
  33. 33.
    Fernandes AMAP, Eberlin MN, Silva PRM, Silva SR, Cunha VS, Daroda RJ, Alberici RM (2014) Unsaturation levels in biodiesel via easy ambient sonic-spray ionization mass spectrometry. Fuel 128:99–103CrossRefGoogle Scholar
  34. 34.
    Cassino NM, Barreiro JB, Martins LRR, Oliveira RV, Cass QB (2009) Validação em métodos cromatográficos para análises de pequenas moléculas em matrizes biológicas. Quim Nova 32:1021–1030CrossRefGoogle Scholar
  35. 35.
    Sousa FA, Costa AIG, Queiroz MELR, Teófilo RF, Neves AA, Pinho GP (2012) Evaluation of matrix effect on the GC response of eleven pesticides by PCA. Food Chem 135:179–185CrossRefGoogle Scholar
  36. 36.
    Pirard C, Widart J, Nguyend BK, Deleuze C, Heudt L, Haubruge E, Pauwa E, Focant JF (2007) Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1152:116–123CrossRefGoogle Scholar
  37. 37.
    EN 14214 (2008) Automotive fuels–Fatty acid methyl esters (FAME) for diesel engines–Requirements and test methods. European Committee for Standardization, BrusselsGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  • Renata Rodrigues de Moura
    • 1
  • Adriana Neves Dias
    • 1
  • Vinícius de Freitas Granjão
    • 1
  • Ednei Gilberto Primel
    • 1
  • Marcelo Gonçalves Montes D’Oca
    • 1
  1. 1.Escola de Química e Alimentos, Laboratório Kolbe de Síntese OrgânicaUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations