Advertisement

Evaluating the Oil-Gelling Properties of Natural Waxes in Rice Bran Oil: Rheological, Thermal, and Microstructural Study

  • Chi Diem DoanEmail author
  • Davy Van de Walle
  • Koen Dewettinck
  • Ashok R. PatelEmail author
Original Paper

Abstract

The main objective of this research was to enhance the understanding of the oil-structuring properties of natural waxes. A number of natural food-grade waxes were evaluated for their oil-gelling properties using a combination of techniques, including rheology, differential scanning calorimetry, and polarized light microscopy. Based on the rheological measurements (oscillatory, flow, and thixotropic behavior), we found that rice bran wax, carnauba Brazilian wax and fruit wax showed weak gelling behavior in rice bran oil (prepared at concentrations as high as 5 % w/w), exhibiting relative low elastic moduli that displayed a high frequency dependency. On the contrary, carnauba wild wax, berry wax, candelilla wax, beeswax, and sunflower wax were efficient oleogelators forming strong gels at concentration of <2 % w/w. We attempt to explain these observed differences in gelling behavior by crystal morphology, network formation, and the final amount of crystalline phase.

Keywords

Rice bran oil Waxes Oleogelation Rheology Microscopy 

Notes

Acknowledgments

This research is supported by an Erasmus Mundus scholarship (Lotus III Project). Authors also thank Marie Curie Career Integration Grant (SAT-FAT-FREE) and Vandemoortele Centre for microscope support and colleagues Ir. Claudia Delbaere, Ir. Stefanie Verstringe, Ir. Kim Moens, and MSc. Mohd Dona Bin Sintang for scientific and technical input.

References

  1. 1.
    Blake AI, Marangoni AG (2014) Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J Am Oil Chem Soc 91(6):885–903CrossRefGoogle Scholar
  2. 2.
    Bot A, Agterof WG (2006) Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. J Am Oil Chem Soc 83(6):513–521CrossRefGoogle Scholar
  3. 3.
    Daniel J, Rajasekharan R (2003) Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids. J Am Oil Chem Soc 80(5):417–421CrossRefGoogle Scholar
  4. 4.
    Dassanayake LSK, Kodali DR, Ueno S (2011) Formation of oleogels based on edible lipid materials. Curr Opin Colloid Interface Sci 16(5):432–439CrossRefGoogle Scholar
  5. 5.
    Dassanayake LSK, Kodali DR, Ueno S, Sato K (2009) Physical properties of rice bran wax in bulk and organogels. J Am Oil Chem Soc 86(12):1163–1173CrossRefGoogle Scholar
  6. 6.
    Gallego R, Arteaga J, Valencia C, Franco J (2013) Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr Polym 98:152–160CrossRefGoogle Scholar
  7. 7.
    Grob K, Giuffré AM, Leuzzi U, Mincione B (1994) Recognition of adulterated oils by direct analysis of the minor components. Lipid/Fett 96(8):286–290CrossRefGoogle Scholar
  8. 8.
    Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JW (2009) Potential food applications of edible oil organogels. Trends Food Sci Technol 20(10):470–480CrossRefGoogle Scholar
  9. 9.
    Hwang H-S, Kim S, Singh M, Winkler-Moser JK, Liu SX (2012) Organogel formation of soybean oil with waxes. J Am Oil Chem Soc 89(4):639–647CrossRefGoogle Scholar
  10. 10.
    Kolattukudy PE (1976) Chemistry and biochemistry of natural waxes. Elsevier Scientific Pub. Co, AmsterdamGoogle Scholar
  11. 11.
    Lupi F, Gabriele D, Greco V, Baldino N, Seta L, de Cindio B (2013) A rheological characterisation of an olive oil/fatty alcohols organogel. Food Res Int 51(2):510–517CrossRefGoogle Scholar
  12. 12.
    Mallia VA, George M, Blair DL, Weiss RG (2009) Robust organogels from nitrogen-containing derivatives of (R)-12-hydroxystearic acid as gelators: comparisons with gels from stearic acid derivatives†. Langmuir 25(15):8615–8625CrossRefGoogle Scholar
  13. 13.
    Marangoni AG (2012) Organogels: an alternative edible oil-structuring method. J Am Oil Chem Soc 89(5):749–780CrossRefGoogle Scholar
  14. 14.
    Martini S, Carelli AA, Lee J (2008) Effect of the addition of waxes on the crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc 85(12):1097–1104CrossRefGoogle Scholar
  15. 15.
    Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, HannoverGoogle Scholar
  16. 16.
    Mukkamala R, Weiss RG (1996) Physical gelation of organic fluids by anthraquinone-steroid-based molecules. Structural features influencing the properties of gels. Langmuir 12(6):1474–1482CrossRefGoogle Scholar
  17. 17.
    Patel AR, Rajarethinem PS, Grędowska A, Turhan O, Lesaffer A, De Vos WH, Dewettinck K (2014) Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food Funct 5(4):645–652CrossRefGoogle Scholar
  18. 18.
    Patel AR, Schatteman D, De Vos WH, Dewettinck K (2013) Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv 3(16):5324–5327CrossRefGoogle Scholar
  19. 19.
    Patel AR, Schatteman D, De Vos WH, Lesaffer A, Dewettinck K (2013) Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. J Colloid Interface Sci 411:114–121CrossRefGoogle Scholar
  20. 20.
    Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci 12(4):221–231CrossRefGoogle Scholar
  21. 21.
    Rogers MA, Pedersen T, Quaroni L (2009) Hydrogen-bonding density of supramolecular self-assembled fibrillar networks probed using synchrotron infrared spectromicroscopy. Cryst Growth Des 9(8):3621–3625CrossRefGoogle Scholar
  22. 22.
    Rogers MA, Wright AJ, Marangoni AG (2009) Oil organogels: the fat of the future? Soft Matter 5(8):1594–1596CrossRefGoogle Scholar
  23. 23.
    Sánchez R, Franco J, Delgado M, Valencia C, Gallegos C (2008) Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chem Eng Res Des 86(10):1073–1082CrossRefGoogle Scholar
  24. 24.
    Shapiro YE (2011) Structure and dynamics of hydrogels and organogels: an NMR spectroscopy approach. Prog Polym Sci 36(9):1184–1253CrossRefGoogle Scholar
  25. 25.
    Shi JH, Liu XY, Li JL, Strom CS, Xu HY (2009) Spherulitic networks: from structure to rheological property. J Phys Chem B 113(14):4549–4554CrossRefGoogle Scholar
  26. 26.
    Soomro RK, Sherazi STH (2013) Extraction and characterization of seed oil waxes by using chromatographic techniques. Int J Ind Chem 4(1):1–7CrossRefGoogle Scholar
  27. 27.
    Toro-Vazquez JF, Morales-Rueda J, Mallia VA, Weiss RG (2010) Relationship between molecular structure and thermo-mechanical properties of candelilla wax and amides derived from (R)-12-hydroxystearic acid as gelators of safflower oil. Food Biophys 5(3):193–202CrossRefGoogle Scholar
  28. 28.
    Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez M (2007) Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc 84(11):989–1000CrossRefGoogle Scholar
  29. 29.
    Trappe V, Weitz D (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85(2):449CrossRefGoogle Scholar
  30. 30.
    Uriev N (1994) Structure, rheology and stability of concentrated disperse systems under dynamic conditions. Colloids Surf, A 87(1):1–14CrossRefGoogle Scholar
  31. 31.
    Wright AJ, Marangoni AG (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83(6):497–503CrossRefGoogle Scholar
  32. 32.
    Yılmaz E, Öğütcü M (2014) Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. J Food Sci 79(9):E1732–E1738CrossRefGoogle Scholar
  33. 33.
    Yılmaz E, Öğütcü M (2014) Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J Am Oil Chem Soc 91(6):1007–1017CrossRefGoogle Scholar
  34. 34.
    Yu F, Kim SH, Kim NS, Lee JH, Bae DH, Lee KT (2006) Composition of solvent‐fractionated rice bran oil. J Food Lipids 13(3):286–297CrossRefGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  1. 1.Laboratory of Food Technology and Engineering, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations