Journal of the American Oil Chemists' Society

, Volume 92, Issue 3, pp 423–430 | Cite as

FAME Production and Fatty Acid Profiles from Moist Chlorella sp. and Nannochloropsis oculata Biomass

  • Rui C. M. Alves Sobrinho
  • Laércio Vauchinski
  • Renata Rodrigues de Moura
  • Ednei G. Primel
  • Paulo C. V. Abreu
  • Marcelo G. Montes D’Oca
Original Paper

Abstract

In the present study, we investigated the production of fatty acid methyl esters (FAME) from moist Chlorella sp. and Nannochloropsis oculata biomass using a hydrolysis–esterification process. Additionally, we evaluated for the first time the fatty acid profile before and after this process. Hydrolysis of the lipid fraction was performed on a moist biomass in the presence of differing amounts of an acid catalyst in both 50 and 100 % w/w water relative to the biomass. The esterification of the crude extracts of the free fatty acids (FFA) was then investigated. The experiments show that in the presence of 50 % w/w water relative to the biomass, the hydrolysis–esterification process results in higher FFA and FAME yields. The analysis of the fatty ester profiles did not reveal any degradation of the FFA from the microalgae biomass under the hydrolysis–esterification conditions. The results were compared with both extraction–transesterification and direct transesterification processes using dry biomass. The extraction–transesterification and hydrolysis–esterification processes resulted in similar FAME yields and similar profiles of the fatty esters from dry and moist biomass materials, respectively.

Keywords

Fatty acid profile Microalgae Moist biomass Nannochloropsis oculata Chlorella sp. 

References

  1. 1.
    D’Oca MGM, Haertel PL, Moraes DC, Callegaro FJP, Kurz MHS, Primel EG, Clementin RM, Morón-Villarreyes JA (2005) Base/acid-catalyzed FAEE production from hydroxylated vegetable oils. Fuel 99:912–916Google Scholar
  2. 2.
    Supple B, Hildige H, Gomez EG, Leahy JJ (2002) The effect of steam treating waste cooking oil on the yield of methyl ester. J Am Oil Chem Soc 79:175–178CrossRefGoogle Scholar
  3. 3.
    Morón-Villarreyes JA, Soldi C, Amorim AM, Pizzolatti MG, Mendonça AP Jr, D’Oca MGM (2007) Diesel/biodiesel proportion for by-compression ignition engines. Fuel 86(12):1977–1982CrossRefGoogle Scholar
  4. 4.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  5. 5.
    Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593CrossRefGoogle Scholar
  6. 6.
    Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–710CrossRefGoogle Scholar
  7. 7.
    Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24(25):355–361CrossRefGoogle Scholar
  8. 8.
    Soares BM, Vieira AA, Lemões JS, Santos CMM, Mesko MF, Primel EG, D’Oca MGM, Duarte FA (2012) Investigation of major and trace element distribution in the extraction–transesterification process of fatty acid methyl esters from microalgae Chlorella sp. Bioresour Technol 110:730–734CrossRefGoogle Scholar
  9. 9.
    Cheng CH, DubT-B T-B, Pi H-C, Jang S-M, Lin Y-H, Lee H-T (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102:10151–10153CrossRefGoogle Scholar
  10. 10.
    Okuda K (2011) Structure and phylogeny of cell coverings. J Plant Res 115:283–288CrossRefGoogle Scholar
  11. 11.
    D’Oca MGM, Viêgas CV, Lemões JS, Miyasaki EK, Morón-Villarreyes JA, Primel EG, Abreu PC (2011) Production of FAME from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenerg 35:1533–1538CrossRefGoogle Scholar
  12. 12.
    Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185CrossRefGoogle Scholar
  13. 13.
    Takeda H (1993) Taxonomical assignment of chlorococal algae from their cell wall composition. Phytochemistry 34(4):1053–1055CrossRefGoogle Scholar
  14. 14.
    Chisti Y (2010) Fuels from microalgae. Biofuels 1(2):233–235CrossRefGoogle Scholar
  15. 15.
    Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77CrossRefGoogle Scholar
  16. 16.
    Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556CrossRefGoogle Scholar
  17. 17.
    Medina AR, Grima EM, Gimenez AG, Ibanez MJ (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580CrossRefGoogle Scholar
  18. 18.
    Fajardo AR, Cerdán LE, Medina RA, Fernandéz FGA, Moreno PAG, Grima EM (2007) Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol 109(2):120–126CrossRefGoogle Scholar
  19. 19.
    Pernet F, Tremblay R (2003) Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38(11):1191–1195CrossRefGoogle Scholar
  20. 20.
    Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Energ Fuel 89:677–684CrossRefGoogle Scholar
  21. 21.
    Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183CrossRefGoogle Scholar
  22. 22.
    Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481CrossRefGoogle Scholar
  23. 23.
    Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730CrossRefGoogle Scholar
  24. 24.
    Takisawa K, Kanemoto K, Miyazaki T, Kitamura Y (2013) Hydrolysis for direct esterification of lipids from wet microalgae. Bioresour Technol 144:38–43CrossRefGoogle Scholar
  25. 25.
    Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, Deng S (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel 115:720–726CrossRefGoogle Scholar
  26. 26.
    Borges L, Morón-Villarreyes JA, D’Oca MGM, Abreu PC (2011) Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenerg 35:4449–4454CrossRefGoogle Scholar
  27. 27.
    Yamashita C, Magalhães PMS (1984) Métodos simples para o cultivo da alga Tetraselmis chuii. EMPARN 8:1–21Google Scholar
  28. 28.
    Zhu M, Zhou PP, Yu L (2002) Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. J Bioresour Technol 84:93–95CrossRefGoogle Scholar
  29. 29.
    Metcalfe LD, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids for gas liquid chromatography. Anal Chem 38:514–515CrossRefGoogle Scholar
  30. 30.
    D’Oca MGM, Soares RM, de Moura RR, Granjão VD (2012) Sulfamic acid: an efficient acid catalyst for esterification of FFA. Fuel 97:884–886CrossRefGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  • Rui C. M. Alves Sobrinho
    • 1
  • Laércio Vauchinski
    • 1
  • Renata Rodrigues de Moura
    • 1
  • Ednei G. Primel
    • 1
  • Paulo C. V. Abreu
    • 2
  • Marcelo G. Montes D’Oca
    • 1
  1. 1.Laboratório Kolbe de Síntese Orgânica, Escola de Química e AlimentosUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos, Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations