Optimization of Enzymatic Hydrolysis of Sacha Inchi Oil using Conventional and Supercritical Carbon Dioxide Processes

Original Paper

Abstract

Sacha inchi (Plukenetia volubilis) oil has high polyunsaturated fatty acids content. The hydrolysis of this oil is an efficient way to obtain desirable free fatty acids (FFA). The optimization of parameters was carried out according to the maximum production of FFA using two enzymatic hydrolysis processes. The effect of enzyme concentration (5–40 % based on weight of oil), temperature (40–60 °C), and oil:water molar ratio (1:5–1:70) were studied for the conventional enzymatic hydrolysis process, while pressure (10–30 MPa) and oil:water molar ratio (1:5–1:30) were studied for the enzymatic hydrolysis in supercritical carbon dioxide (SC-CO2) media. The hydrolysis in SC-CO2 media resulted in higher production of FFA (77.98 % w/w) at 30 MPa and an oil:water molar ratio equal to 1:5 compared to the conventional process (68.40 ± 0.98 % w/w) at 60 °C, oil:water molar ratio equal to 1:70, and 26.17 % w/w, enzyme/oil. The only significant parameter on the production of FFA for conventional enzymatic hydrolysis was enzyme concentration, while for the hydrolysis in SC-CO2 media both pressure and the molar ratio of oil:water were significant. Lipid class analyses showed that with both methods, FFA, monoglycerides, and diglycerides content in the final product increased compared to pure oil, while triglycerides content decreased. Fatty acid composition analysis showed that the content of fatty acids in the FFA form were similar to their triglyceride form.

Keywords

Sacha inchi oil Hydrolysis Supercritical CO2 Lipozyme TL IM 

References

  1. 1.
    Guillén MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR Spectroscopy and 1H NMR. Comparison with linseed oil. JAOCS 80:755–762CrossRefGoogle Scholar
  2. 2.
    Gutiérrez L-F, Rosada LM, Jiménez A (2011) Chemical composition of sacha inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites 62:76–83CrossRefGoogle Scholar
  3. 3.
    Hamaker BR, Valles C, Gilman R, Hardmeier RM, Clark D, Garcia HH, Gonzales AE, Kohlstad I, Castro M, Valdivia R, Rodriguez T, Lescano M (1992) Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis). Cereal Chem 69:461–463Google Scholar
  4. 4.
    Pascual CH, Mejía LM (2000) Extracción y caracterización de aceite de sacha inchi (Plukenetia volubilis L.). Anales científicos. UNALM 42:146–160 (in Spanish)Google Scholar
  5. 5.
    Follegatti-Romero LA, Piantino CR, Grimaldi R, Cabral FA (2009) Supercritical CO2 extraction of omega-3 rich oil from sacha-inchi (Plukenetia volubilis L.) seeds. J Supercrit Fluids 49:323–329CrossRefGoogle Scholar
  6. 6.
    Prado IM, Giufrida WM, Alvarez VH, Cabral VF, Quispe-Condori S, Saldaña MDA, Cardozo-Filho L (2011) Phase equilibrium measurements of sacha inchi oil (Plukenetia volubilis) and CO2 at high pressures. JAOCS 88:1263–1269CrossRefGoogle Scholar
  7. 7.
    Gorriti A, Arroyo J, Quispe F, Cisneros B, Condorhuamán M, Almora Y, Chumpitaz V (2010) Toxicidad oral a 60 días del aceite de sacha inchi (Plukenetia volubilis L.) y linaza (Linum usitatissimum L.) y determinación de la dosis letal 50 en roedores. Revista Peruana de Medicina Experimental y Salud Publica 27:352–360 (in Spanish)CrossRefGoogle Scholar
  8. 8.
    Hanssen H-P, Schmitz-Hübsch M (2011) Sacha inchi (Plukenetia volubilis L.) nut oil and its therapeutic and nutritional uses. In: Preedy V, Watson R, Patel V (eds) Nuts and seeds in healthy and disease prevention, Academic Press, 991–994Google Scholar
  9. 9.
    Akoh CC, Sellappan S, Fomuso LB, Yankah VV (2002) Enzymatic synthesis of structured lipids. In: Gardner HW, Kuo TM (eds) Lipid biotechnology. CRC Press, Ch 21, 433–459Google Scholar
  10. 10.
    Rodrigues RC, Ayub MAZ (2011) Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688CrossRefGoogle Scholar
  11. 11.
    Rezaei K, Temelli F (2000) Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide. JAOCS 77:903–909CrossRefGoogle Scholar
  12. 12.
    Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66CrossRefGoogle Scholar
  13. 13.
    Marangoni AG (2002) Lipases: structure, function and properties. In: Gardner HW, Kuo TM (eds) Lipid biotechnology. CRC Press, Ch 17, 402–436Google Scholar
  14. 14.
    Yiğitoğlu M, Temoçin Z (2010) Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. J Mol Catal B Enzym 66:130–135CrossRefGoogle Scholar
  15. 15.
    Ting WJ, Tung KW, Giridhar R, Wu WT (2006) Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil. J Mol Catal B Enzym 42:32–38CrossRefGoogle Scholar
  16. 16.
    Kiatsimkul P-p, Sutterlin WR, Suppes GJ (2006) Selective hydrolysis of epoxidized soybean oil by commercially available lipases: effects of epoxy group on the enzymatic hydrolysis. J Mol Catal B Enzym 41:55–60CrossRefGoogle Scholar
  17. 17.
    Wille H-J, Wang J (1996) Enzymatic enrichment of γ-linolenic acid from black currant seed oil. In: Huang Y-S, Mills DE (eds) Gamma-linolenic acid metabolism and its roles in nutrition and medicine. AOCS Publishing, Chapter 4Google Scholar
  18. 18.
    Goswami D, Sen R, Basu JK, De S (2009) Maximization of bioconversion of castor oil into ricinoleic acid by response surface methodology. Bioresour Technol 100:4067–4073CrossRefGoogle Scholar
  19. 19.
    Cheong L-Z, Tan C-P, Long K, Yusoff MSA, Arifin N, Lo S-K, Lai O-M (2007) Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: optimization using response surface methodology. Food Chem 105:1614–1622CrossRefGoogle Scholar
  20. 20.
    Ribeiro BD, Coelho MAZ, Barreto DW (2012) Production of concentrated natural beta-carotene from buriti (Mauritia vinifera) oil by enzymatic hydrolysis. Food Bioprod Process 90:141–147CrossRefGoogle Scholar
  21. 21.
    Knez Ž (2009) Enzymatic reactions in dense gases. J Supercrit Fluids 47:357–372CrossRefGoogle Scholar
  22. 22.
    Temelli F (2009) Perspectives on supercritical fluid processing of fat and oils. J Supercrit Fluids 47:583–590CrossRefGoogle Scholar
  23. 23.
    Habulin M, Primožič M, Knez Ž (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54:667–677Google Scholar
  24. 24.
    Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280CrossRefGoogle Scholar
  25. 25.
    Rezaei K, Temelli F (2001) On-line extraction-reaction of canola oil using immobilized lipase in supercritical CO2. J Supercrit Fluids 19:263–274CrossRefGoogle Scholar
  26. 26.
    Martinez JL, Rezaei K, Temelli F (2002) Effect of water on canola oil hydrolysis in an on-line extraction-reaction system using supercritical CO2. Ind Eng Chem Res 41:6475–6481CrossRefGoogle Scholar
  27. 27.
    Sovová H, Zarevúcka M (2003) Lipase-catalyzed hydrolysis of blackcurrant oil in supercritical carbon dioxide. Chem Eng Sci 58:2339–2350CrossRefGoogle Scholar
  28. 28.
    Sovová H, Zarevúcka M, Bernášeck P, Stamenić M (2008) Kinetics and specificity of lipozyme-catalyzed oil hydrolysis in supercritical CO2. Chem Eng Res Des 86:673–681CrossRefGoogle Scholar
  29. 29.
    Primožič M, Habulin M, Knez Ž (2003) Parameter optimization for the enzymatic hydrolysis of sunflower oil in high-pressure reactors. JAOCS 80:643–646CrossRefGoogle Scholar
  30. 30.
    Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226CrossRefGoogle Scholar
  31. 31.
    Prado GHC, Khan M, Saldaña MDA, Temelli F (2012) Enzymatic hydrolysis of conjugated linoleic acid-enriched anhydrous milk fat in supercritical carbon dioxide. J Supercrit Fluids 66:198–206CrossRefGoogle Scholar
  32. 32.
    Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372CrossRefGoogle Scholar
  33. 33.
    Leitgeb M, Knez Ž (1990) The influence of water on the synthesis of n-butyl oleate by immobilized Mucor miehei lipase. JAOCS 67:775–778CrossRefGoogle Scholar
  34. 34.
    Verleyen T, Verhe R, Garcia L, Dewettinck K, Huyghebaert A, De Greyt W (2001) Gas chromatographic characterization of vegetable oil deodorization distillate. J Chromatogr A 921:277–285CrossRefGoogle Scholar
  35. 35.
    Burger BL, Zeeuw J (2007) High temperature stability problem solved with new metal columns—analysis of total glycerides in biodiesel oils by ASTM D-6584. Restek Corporation, PA 16823, USAGoogle Scholar
  36. 36.
    Supelco(1997) Product specification: methanolic base, 0.5NGoogle Scholar
  37. 37.
    Kramer JKG, Cruz-Hernandez C, Zhou JQ (2001) Conjugated linoleic acids and octadecenoic acids: analysis by GC. Eur J Lipid Sci Technol 103:600–609CrossRefGoogle Scholar
  38. 38.
    Yurawecz MP, Kramer JKG, Ku Y (1999) Methylation procedures for conjugated linoleic acid. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, Volume 1. AOAC Press, p 64–82Google Scholar
  39. 39.
    Vikbjerg AF, Peng L, Mu H, Xu X (2005) Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa. JAOCS 82:237–242CrossRefGoogle Scholar
  40. 40.
    Valivety RH, Halling PJ, Peilow AD, Macrae AR (1994) Relationship between water activity and catalytic activity of lipases in organic media. Eur J Biochem 222:461–466CrossRefGoogle Scholar
  41. 41.
    Colombié S, Tweddell RJ, Condoret JS, Marty A (1998) Water activity control a way to improve efficiency of continuous lipase esterification. Biotechnol Bioeng 60:362–368CrossRefGoogle Scholar
  42. 42.
    Wiebe R, Gaddy VL (1941) Vapour phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres. J Am Chem Soc 63:475–477CrossRefGoogle Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  • Glaucia H. C. Prado
    • 1
  • Marleny D. A. Saldaña
    • 1
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations