Journal of the American Oil Chemists' Society

, Volume 89, Issue 4, pp 631–637

Development and Validation of a Method for the Determination of Fatty Acid Methyl Ester Contents in Tung Biodiesel and Blends

  • Viviane L. Pardo
  • Cássia A. M. Fagundes
  • Sergiane S. Caldas
  • Márcia H. Kurz
  • Rosilene M. Clementin
  • Marcelo G. M. D’Oca
  • Ednei G. Primel
Original Paper

Abstract

The aim of this study was to develop and validate a method for the analysis of fatty acid methyl ester (FAMEs) content in tung biodiesel and blends with soybean biodiesel. The limits of detection (LOD) and quantification (LOQ), linearity, robustness, accuracy and precision were evaluated by using gas chromatography with mass spectrometry detection and impact electron ionization. The analytical curves showed correlation coefficients values higher than 0.99. The LOD and LOQ were 0.78 and 2.5 mg L−1 for all FAMEs, respectively. The values of accuracy were between 86 and 117%, with relative standard deviation lower than 8%. The method was applied to tung biodiesel and tung and soybean biodiesel blends in the following proportions: 15:85, 20:80, 25:75 (%v/v). All of them showed good performance. Since the method was also applied to soybean biodiesel, the efficiency of the method for the analysis of both pure tung biodiesel and blends with different raw materials was confirmed and the robustness of the method was evidenced.

Keywords

Tung oil Validation GC–EI–MS Blends Biodiesel FAMEs 

References

  1. 1.
    Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216CrossRefGoogle Scholar
  2. 2.
    Monyem A, Van Gerpen JH (2001) The effect of biodiesel oxidation on engine performance and emissions. Biomass Bioenergy 20:317–325CrossRefGoogle Scholar
  3. 3.
    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  4. 4.
    Knothe G (2008) Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364CrossRefGoogle Scholar
  5. 5.
    Dunn RO (2002) Effect of oxidation under accelerated conditions on fuel properties of methyl soyate. J Am Oil Chem Soc 79:915–920CrossRefGoogle Scholar
  6. 6.
    Shang Q, Jiang W, Lu H, Liang B (2010) Properties of tung oil biodiesel and its blends with diesel. Bioresour Technol 101:826–828CrossRefGoogle Scholar
  7. 7.
    Mitei YC, Ngila JC, Yeboah SO, Wessjohann L, Schmidt J (2008) NMR, GC-MS and ESI-FTICR-MS profiling of fatty acids and triacylglycerols in some Botswana seed oils. J Am Oil Chem Soc 85:1021–1032CrossRefGoogle Scholar
  8. 8.
    Gruszynski C, Anghinoni I, Meurer EJ, Kampf AN (2003) Misturas de casca de tungue e casca de arroz carbonizada no enraizamento de Dendranthema morifolium Tzevelev ‘Golden Polaris’ sob método de transpiração. Rev Bras Horticult Ornamen 9:63–70Google Scholar
  9. 9.
    Casagrande JG Jr, Ávila DT, Silva SDA, Ávila TT, Aires RF (2008) Produtividade do Tungue em plantios comerciais na Serra Gaúcha. Embrapa Clima Temperado, PelotasGoogle Scholar
  10. 10.
    Park JY, Kim DK, Wang ZM, Lu P, Park SC, Lee JS (2008) Production and characterization of biodiesel from tung oil. Appl Biochem Biotechnol 148:109–117CrossRefGoogle Scholar
  11. 11.
    ANP (2008) Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (accessed in May 2010) Resolução—RE no. 7, March 19th, 2008 http://www.udop.com.br/download/legislacao/biodiesel/…/res_anp_7.pdf
  12. 12.
    Schober S, Seidl I, Mittelbach M (2006) Ester content evaluation in biodiesel from animal fats and lauric oils. Eur J Lipid Sci Technol 108:309–314CrossRefGoogle Scholar
  13. 13.
    Rocha DQ, Barros DK, Costa EVC, Souza KS, Passos RR, Junior VFV, Chaar JS (2008) Determinação da matéria-prima utilizada na produção do biodiesel adicionado ao diesel mineral através de monitoramento seletivo de íons. Quim Nova 31:1062–1066CrossRefGoogle Scholar
  14. 14.
    Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quim Nova 27:771–780CrossRefGoogle Scholar
  15. 15.
    Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO) (2003), Orientações sobre Validação de Métodos de Ensaios Químicos, DOQ-CGCRE-008Google Scholar
  16. 16.
    Valentini SR, Sommer WA, Matioli G (2007) Validação de métodos analíticos. Arquivos do Mudi 11:26–31Google Scholar
  17. 17.
    Dias JM, Alvim-Ferraz MCM, Almeida MF (2008) Mixtures of vegetable oils and animal fat for biodiesel production: influence on product composition and quality. Energy Fuels 22:3889–3893CrossRefGoogle Scholar
  18. 18.
    Hui-Qin W, Xiao-Lan H, Xiao-Shan L, Fang H, Zhi-Xin Z, Ye-Fen M (2007) Gas chromatographic retention time rule and mass spectrometric fragmentation rule of fatty acids and its application in food. Chin J Anal Chem 35:998–1003CrossRefGoogle Scholar
  19. 19.
    Firestone D (2006) Physical and chemical characteristics of oils, fats, and waxes, 2nd edn. AOCS Press, ChampaignGoogle Scholar

Copyright information

© AOCS 2011

Authors and Affiliations

  • Viviane L. Pardo
    • 1
  • Cássia A. M. Fagundes
    • 1
  • Sergiane S. Caldas
    • 1
  • Márcia H. Kurz
    • 1
  • Rosilene M. Clementin
    • 1
  • Marcelo G. M. D’Oca
    • 1
  • Ednei G. Primel
    • 1
  1. 1.Programa de Pós-Graduação em Química Tecnológica e AmbientalEscola de Química e Alimentos, Universidade Federal do Rio Grande FURGRio GrandeBrazil

Personalised recommendations