Journal of the American Oil Chemists' Society

, Volume 88, Issue 2, pp 223–233 | Cite as

Phase Equilibrium and Optimization Tools: Application for Enhanced Structured Lipids for Foods

  • Moises Teles dos Santos
  • Galo A. C. Le Roux
  • Vincent Gerbaud
Original Paper

Abstract

Solid–liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the α polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal β and β′ solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, γ-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. γ-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.

Keywords

Triacylglycerols Structured lipids Solid–liquid equilibrium DSC Solid fat content Melting point Medium chain fatty acid Long chain fatty acid 

List of symbols

ΔH

Enthalpy (kJ/mol)

ε

Degree of isomorphism

γ

Activity coefficient

μ

Chemical potential (kJ/mol)

a, A

Binary interaction parameters

Cp

Molar heat capacity (kJ/mol)

G

Extensive Gibbs free energy (kJ)

G

Molar Gibbs free energy (kJ/mol)

\( \overline{g} \)

Partial molar Gibbs free energy (kJ/mol)

H

Extensive enthalpy (kJ)

n

Number of moles

P

Pressure (bar)

q

Molecule size parameter

R

Gas constant (kJ/mol K)

S

Specific entropy (kJ/mol K)

T

Temperature (K)

V

Molar volume (cm3/mol)

v0

Sum of the carbon number

vnon

Absolute difference in carbon number

X

Molar fraction

Subscripts

i

Component i

o

Pure state

m

Melting state

Superscripts

j

Solid phase j

nc

Number of components

np

Number of phases

E

Excess property

ap

Apparent

p

Phase p

Notes

Acknowledgments

We acknowledge the financial support received from The National Council for Scientific and Technological Development (CNPq-Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) and the ALFA-II-400 FIPHARIA program (Europe).

References

  1. 1.
    Jiménez-Colmenero F (2007) Healthier lipid formulation approaches in meat based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci Technol 18(11):567–578CrossRefGoogle Scholar
  2. 2.
    Yang T, Zhang H, Mu H, Sinclair AJ, Xu X (2004) Diacylglycerols from butterfat: production by glycerolysis and short-path distillation and analysis of physical properties. J Am Oil Chem Soc 81(10):979–987CrossRefGoogle Scholar
  3. 3.
    Osborn H, Akoh C (2002) Structured lipids-novel fats with medical, nutraceutical, and food applications. Compr Rev Food Sci Food Saf 3(1):93–103Google Scholar
  4. 4.
    Singh AP, McClements DJ, Marangoni AG (2004) Solid fat content determination by ultrasonic velocimetry. Food Res Int 37:545–555CrossRefGoogle Scholar
  5. 5.
    Arifin N, Cheong LZ, Koh SP, Long K, Tan CP, Yusoff MSA, Aini IN, Lo SK, Lai OM (2009) Physicochemical properties and sensory attributes of medium-and long-chain triacylglycerols (MLCT)-enriched bakery shortening. Food Bioprocess Technol. doi: 10.1007/s11947-009-0204-0
  6. 6.
    Pantzaris TP, Basiron Y (2002) The lauric (coconut and palm kernel) oils. In: Gunstone FD (ed) Vegetable oils in food technology: composition, properties and uses. Blackwell, Oxford, pp 157–202Google Scholar
  7. 7.
    Braipson-Danthine S, Deroanne C (2004) Influence of SFC, microstructure and polymorphism on texture (hardness) of binary blends of fats involved in the preparation of industrial shortenings. Food Res Int 37:941–948CrossRefGoogle Scholar
  8. 8.
    Lee K, Akoh C (1998) Characterization of enzymatically synthesized structured lipids containing eicosapentaenoic, docosahexaenoic, and caprylic acids. J Am Oil Chem Soc 75(4):495–499CrossRefGoogle Scholar
  9. 9.
    Timm-Heinrich M, Nielsen NS, Xu X, Jacobsen C (2004) Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn2-position—as bulk lipids and in milk drinks. Innov Food Sci Emerg Technol 5(2):249–261CrossRefGoogle Scholar
  10. 10.
    Iwasaki Y, Yamane T (2000) Enzymatic synthesis of structured lipids. J Mol Catal B Enzym 10(1–3):129–140CrossRefGoogle Scholar
  11. 11.
    Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Dietet 17:449–459CrossRefGoogle Scholar
  12. 12.
    Shahidi F (2004) Functional foods: their role in health promotion and disease prevention. J Food Sci 69(5):146–149CrossRefGoogle Scholar
  13. 13.
    Gani R (2004) Chemical product design: challenges and opportunities. Comp Chem Eng 28:2441–2457CrossRefGoogle Scholar
  14. 14.
    Sato K (2001) Crystallization behaviour of fats and lipids—a review. Chem Eng Sci 56:2255–2265CrossRefGoogle Scholar
  15. 15.
    Wesdorp LH, van Meeteren JA, de Jong S, Giessen RVD, Overbosch P, Grootscholten PAM, Struik M, Royers E, Don A, de Loos TH, Peters C, Gandasasmita I (2005) Liquid-multiple solid phase equilibria in fats. In: Marangoni AG (ed) Theory and experiments. Fat Crystal Networks, New York, pp 481–710Google Scholar
  16. 16.
    Inoue T, Hisatsugu Y, Yamamoto R, Suzuki M (2004) Solid–liquid phase behavior of binary fatty acid mixtures 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures. Chem Phys Lipids 127:143–152CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Hartel RW (2006) Phase behavior of model lipid systems: solubility of high-melting fats in low-melting fats. J Am Oil Chem Soc 83:505–511CrossRefGoogle Scholar
  18. 18.
    Zhang L, Ueno S, Miura S, Sato K (2007) Binary phase behavior of 1, 3-dipalmitoyl-2-oleoyl-sn-glycerol and 1, 2-dioleoyl-3-palmitoyl-rac-glycerol. J Am Oil Chem Soc 84:219–227CrossRefGoogle Scholar
  19. 19.
    Himawan C, Starov V, Stapley A (2006) Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci 122(1–3):3–33CrossRefGoogle Scholar
  20. 20.
    Won K (1993) Thermodynamic model of liquid-solid equilibria for natural fats and oils. Fluid Phase Equilibr 82:261–273CrossRefGoogle Scholar
  21. 21.
    Slaughter DW, Doherty MF (1995) Calculation of solid-liquid equilibrium and crystallization paths for melt crystallization processes. Chem Eng Sci 50(11):1679–1694CrossRefGoogle Scholar
  22. 22.
    Costa MC, Rolemberg MP, Boros LAD, Krahenbuhl MA, de Oliveira MG, Meirelles AJA (2007) Solid-liquid equilibrium of binary fatty acid mixtures. J Chem Eng Data 52:30–36CrossRefGoogle Scholar
  23. 23.
    Bragg WL, Williams EJ (1934) The effect of thermal agitation on atomic arrangement in alloys. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 145(855): p 699–730Google Scholar
  24. 24.
    Slaughter DW, Doherty MF (1995) Calculation of solid–liquid equilibrium and crystallization paths for melt crystallization processes. Chem Eng Sci 50(11):1679–1694CrossRefGoogle Scholar
  25. 25.
    Abes M, Bouzidi L, Narine SS (2007) Crystallization and phase behavior of 1,3-propanediol esters II. 1,3-Propanediol distearate/1,3-propanediol dipalmitate (SS/PP) and 1,3-propanediol distearate/1,3-propanediol dimyristate (SS/MM) binary systems. Chem Phys Lipids 150:89–108CrossRefGoogle Scholar
  26. 26.
    Boodhoo MV, Kutek T, Filip V, Narine SS (2008) The binary phase behavior of 1,3-dimyristoyl-2-stearoyl-sn-glycerol and 1,2-dimyristoyl-3-stearoyl-sn-glycerol. Chem Phys Lipids 154(1):7–18CrossRefGoogle Scholar
  27. 27.
    Prausnitz JW, Lichtenthaler RN, de Azevedo GE (1998) Molecular thermodynamics of fluid phase equilibria. 3th edn. Prentice-Hall, New YorkGoogle Scholar
  28. 28.
    McDonald CM, Floudas CA (1997) GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Comp Chem Eng 21:1–23CrossRefGoogle Scholar
  29. 29.
    Teles dos Santos M, Carrilo Le Roux GA, Joulia X, Gerbaud V (2009) Solid–liquid equilibrium modelling and stability tests for triacylglycerols tixtures. Comp Aided Chem Eng 27:885–890CrossRefGoogle Scholar
  30. 30.
    Michelsen ML (1982) The isothermal flash problem Part I. stability. Fluid Phase Equilibr 9:1–19CrossRefGoogle Scholar
  31. 31.
    Rosenthal RE (2008) GAMS Release 23.2. A user’s guide. GAMS Development Corporation, Washington, DCGoogle Scholar
  32. 32.
    Takiyama H, Suzuki H, Uchida H, Matsuoka M (2002) Determination of solid–liquid phase equilibrium by using measured DSC curves. Fluid Phase Equilibr 194–197:1107–1117CrossRefGoogle Scholar
  33. 33.
    Zéberg-Mikkelsen CK, Stenby EH (1999) Predicting the melting points and the enthalpies of fusion of saturated triglycerides by a group contribution method. Fluid Phase Equilibr 162:7–17CrossRefGoogle Scholar
  34. 34.
    Ceriani R, Gani R, Meirelles AJA (2009) Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods. Fluid Phase Equilibr 28:49–55CrossRefGoogle Scholar
  35. 35.
    Bruin S (1999) Phase equilibrium for food product and process design. Fluid Phase Equilibr 158–160:657–671CrossRefGoogle Scholar
  36. 36.
    Sambanthamurthi R, Sundram K, Tan Y (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558CrossRefGoogle Scholar
  37. 37.
    Lin SW (2002) Palm oil. In: Gunstone FD (ed) Vegetable oils in food technology: composition properties and uses. Blackwell, Oxford, pp 59–97Google Scholar
  38. 38.
    Keller G, Lavigne F, Loisel C, Ollivon M, Bourgaux C (1996) Investigation of the complex thermal behaviour of fats. J Therm Anal 47:1545–1565CrossRefGoogle Scholar
  39. 39.
    Sato K, Koyano T (2001) Crystallization properties of cocoa butter. In: Garti N, Sato K (eds) Crystallization processes in fats and lipid systems. Marcel Dekker, New York, pp 429–456Google Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Moises Teles dos Santos
    • 1
    • 2
    • 3
  • Galo A. C. Le Roux
    • 1
  • Vincent Gerbaud
    • 2
    • 3
  1. 1.Escola Politécnica, Laboratório de Simulação e Controle de ProcessosUniversidade de São PauloSão PauloBrazil
  2. 2.INP, UPS, LGC (Laboratoire de Génie Chimique)Université de ToulouseToulouse Cedex 04France
  3. 3.LGC (Laboratoire de Génie Chimique)CNRSToulouse Cedex 04France

Personalised recommendations