Journal of the American Oil Chemists' Society

, Volume 88, Issue 1, pp 57–64 | Cite as

Synthesis and Properties of Ascorbyl Esters Catalyzed by Lipozyme TL IM using Triglycerides as Acyl Donors

  • D. Reyes-Duarte
  • N. Lopez-Cortes
  • P. Torres
  • F. Comelles
  • J. L. Parra
  • S. Peña
  • A. V. Ugidos
  • A. Ballesteros
  • F. J. PlouEmail author
Original Paper


Esters of l-ascorbic acid with long-chain fatty acids (E-304) are employed as antioxidants in foods rich in lipids. Although their enzymatic synthesis offers some advantages compared with the current chemical processes, most of the reported methods employ the immobilized lipase from Candida antarctica as biocatalyst and free fatty acids or activated esters as acyl donors. In order to diminish the cost of the process, we have investigated the synthesis of ascorbyl oleate and ascorbyl palmitate esters with the immobilized Thermomyces lanuginosus lipase Lipozyme TL IM—which is significantly less expensive than Novozym 435—and triglycerides as source of fatty acids. Lipozyme TL IM gave rise to a lower yield of 6-O-ascorbyl oleate than Novozym 435 when using triolein (64 vs. 84%) and olive oil (27 vs. 33%) as acyl donors. Both 6-O-ascorbyl oleate and 6-O-ascorbyl palmitate displayed excellent surfactant and antioxidant properties. The Trolox Equivalent Antioxidant Capability values for the oleate and palmitate were 71 and 84%, respectively, of those obtained with l-ascorbic acid; however, both derivatives were able to stabilize soybean oil towards peroxide formation.


Vitamin C Ascorbyl esters l-Ascorbyl oleate Lipase Thermomyces lanuginosus Enzymatic transesterification Alkyl esters Triglycerides Surface tension CMC Antioxidant activity 



We thank Prof. Manuel Bernabé (Instituto de Química Orgánica, CSIC, Madrid, Spain) for help with NMR analysis. We thank Ramiro Martínez (Novozymes A/S, Madrid, Spain) for supply of lipase samples and for suggestions. We are grateful to Comunidad de Madrid for a research contract to P. Torres and to CONACYT for grant 020256 to D. Reyes. This research was supported by the Spanish CSIC (Project 200680F0132) and by the Latin-American Science & Technology Development Programme (CYTED Project 108RT0346).


  1. 1.
    Torres P, Kunamneni A, Ballesteros A, Plou FJ (2008) Enzymatic modification for ascorbic acid and alpha-tocopherol to enhance their stability in food and nutritional applications. Open Food Sci J 2:1–9CrossRefGoogle Scholar
  2. 2.
    Stamatis H, Sereti V, Kolisis FN (2001) Enzymatic synthesis of hydrophilic and hydrophobic derivatives of natural phenolic acids in organic media. J Mol Catal B Enzym 11:323–328CrossRefGoogle Scholar
  3. 3.
    Bonrath W, Netscher T (2005) Catalytic processes in vitamins synthesis and production. Appl Catal A Gen 280:55–73CrossRefGoogle Scholar
  4. 4.
    Torres P, Reyes-Duarte D, Lopez-Cortes N, Ferrer M, Ballesteros A, Plou FJ (2008) Acetylation of vitamin E by Candida antarctica lipase B immobilized on different carriers. Process Biochem 43:145–153CrossRefGoogle Scholar
  5. 5.
    Alcalde M, Ferrer M, Plou FJ (2007) Environmental biocatalysis: from remediation with enzymes to novel green processes. Biocatal Biotransform 25:113CrossRefGoogle Scholar
  6. 6.
    Wohlgemuth R (2007) Modular and scalable biocatalytic tools for practical safety, health and environmental improvements in the production of speciality chemicals. Biocatal Biotransform 25:178–185CrossRefGoogle Scholar
  7. 7.
    Kochhar SP, Rossell JB (1990) Detection, estimation and evaluation of antioxidants in food systems. In: Hudson BJF (ed) Food antioxidants. Elsevier, Essex, pp 19–64Google Scholar
  8. 8.
    Karmee SK (2009) Biocatalytic synthesis of ascorbyl esters and their biotechnological applications. Appl Microbiol Biotechnol 81:1013–1022CrossRefGoogle Scholar
  9. 9.
    Valentin HE, Qi QG (2005) Biotechnological production and application of vitamin E: current state and prospects. Appl Microbiol Biotechnol 68:436–444CrossRefGoogle Scholar
  10. 10.
    Humeau C, Girardin M, Coulon D, Miclo A (1995) Synthesis of 6-O-palmitoyl l-ascorbic-acid catalyzed by Candida antartica lipase. Biotechnol Lett 17:1091–1094CrossRefGoogle Scholar
  11. 11.
    Yan YC, Bornscheuer UT, Schmid RD (1999) Lipase-catalyzed synthesis of vitamin C fatty acid esters. Biotechnol Lett 21:1051–1054CrossRefGoogle Scholar
  12. 12.
    Park S, Viklund F, Hult K, Kazlauskas RJ (2003) Ionic liquids create new opportunities for nonaqueous biocatalysis with polar substrates: acylation of glucose and ascorbic acid. In: Rogers RD, Seddon KR (eds) Ionic liquids as green solvents: progress and prospects. ACS Symposium Series, American Chemical Society, vol 856, pp 225–238Google Scholar
  13. 13.
    Jun HK, Bae KM, Kim YH (1998) Identification of l-ascorbic acid 2-O-alpha-glucoside, a stable form of ascorbic acid, in kimchi. J Microbiol Biotechnol 8:710–713Google Scholar
  14. 14.
    Song QX, Wei DZ (2002) Study of vitamin C ester synthesis by immobilized lipase from Candida sp. J Mol Catal B Enzym 18:261–266CrossRefGoogle Scholar
  15. 15.
    Ferrer M, Plou FJ, Fuentes G, Cruces MA, Andersen L, Kirk O, Christensen M, Ballesteros A (2002) Effect of the immobilization method of lipase from Thermomyces lanuginosus on sucrose acylation. Biocatal Biotransform 20:63–71CrossRefGoogle Scholar
  16. 16.
    Borole AP, Davison BH (2007) Techno-economic analysis of biocatalytic processes for production of alkene epoxides. Appl Biochem Biotechnol 137:437–449CrossRefGoogle Scholar
  17. 17.
    Bradoo S, Saxena RK, Gupta R (1999) High yields of ascorbyl palmitate by thermostable lipase-mediated esterification. J Am Oil Chem Soc 76:1291–1295CrossRefGoogle Scholar
  18. 18.
    Burham H, Gafoor RA, Rasheed A, Noor NM, Badruddin S, Sidek H (2009) Enzymatic synthesis of palm-based ascorbyl esters. J Mol Catal B Enzym 58:153–157CrossRefGoogle Scholar
  19. 19.
    Hsieh HJ, Chen JW, Giridhar R, Wu WT (2005) Synthesis of mixed esters of ascorbic acid using methyl esters of palm and soybean oils. Prep Biochem Biotech 35:113–118CrossRefGoogle Scholar
  20. 20.
    Ferrer M, Soliveri J, Plou FJ, Lopez-Cortes N, Reyes-Duarte D, Christensen M, Copa-Patino JL, Ballesteros A (2005) Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme Microb Technol 36:391–398CrossRefGoogle Scholar
  21. 21.
    Reyes-Duarte D, Polaina J, Lopez-Cortes N, Alcalde M, Plou FJ, Elborough K, Ballesteros A, Timmis KN, Golyshin P, Ferrer M (2005) Conversion of a carboxylesterase into a triacylglycerol lipase by a random mutation. Angew Chem Int Edit 44:7553–7557CrossRefGoogle Scholar
  22. 22.
    Awang R, Basri M, Ahmad S, Salleh AB (2005) Thermomyces lanuginosus lipase-catalyzed esterification of 9,10-dihydroxystearic acid and monohydric alcohol. J Oleo Sci 54:305–309Google Scholar
  23. 23.
    Plou FJ, Cruces MA, Ferrer M, Fuentes G, Pastor E, Bernabe M, Christensen M, Comelles F, Parra JL, Ballesteros A (2002) Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol 96:55–66CrossRefGoogle Scholar
  24. 24.
    Wang YF, Lalonde JJ, Momongan M, Bergbreiter DE, Wong CH (1988) Lipase-catalyzed irreversible transesterifications using enol esters as acylating reagents—preparative enantioselective and regioselective syntheses of alcohols, glycerol derivatives, sugars, and organometallics. J Am Chem Soc 110:7200–7205CrossRefGoogle Scholar
  25. 25.
    Cao LQ, Bornscheuer UT, Schmid RD (1999) Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme. J Mol Catal B Enzym 6:279–285CrossRefGoogle Scholar
  26. 26.
    Reyes-Duarte D, Lopez-Cortes N, Ferrer M, Plou FJ, Ballesteros A (2005) Parameters affecting productivity in the lipase-catalysed synthesis of sucrose palmitate. Biocatal Biotransform 23:19–27CrossRefGoogle Scholar
  27. 27.
    Plou FJ, Barandiaran M, Calvo MV, Ballesteros A, Pastor E (1996) High-yield production of mono- and di-oleoylglycerol by lipase-catalyzed hydrolysis of triolein. Enzyme Microb Technol 18:66–71CrossRefGoogle Scholar
  28. 28.
    Brenes M, Garcia A, Dobarganes MC, Velasco J, Romero C (2002) Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J Agric Food Chem 50:5962–5967CrossRefGoogle Scholar
  29. 29.
    Ferrer M, Comelles F, Plou FJ, Cruces MA, Fuentes G, Parra JL, Ballesteros A (2002) Comparative surface activities of di- and trisaccharide fatty acid esters. Langmuir 18:667–673CrossRefGoogle Scholar
  30. 30.
    Adamczak M, Bornscheuer UT (2009) Improving ascorbyl oleate synthesis catalyzed by Candida antarctica lipase B in ionic liquids and water activity control by salt hydrates. Process Biochem 44:257–261CrossRefGoogle Scholar
  31. 31.
    Palma S, Manzo RH, Allemandi D, Fratoni L, Lo Nostro P (2002) Solubilization of hydrophobic drugs in octanoyl-6-O-ascorbic acid micellar dispersions. J Pharm Sci 91:1810–1816CrossRefGoogle Scholar
  32. 32.
    LoNostro P, Capuzzi G, Pinelli P, Mulinacci N, Romani A, Vincieri FF (2000) Self-assembling and antioxidant activity of some vitamin C derivatives. Colloid Surf A Physicochem Eng Asp 167:83–93CrossRefGoogle Scholar
  33. 33.
    Song QX, Wei DZ, Zhou WY, Xu WQ, Yang SL (2004) Enzymatic synthesis and antioxidant properties of l-ascorbyl oleate and l-ascorbyl linoleate. Biotechnol Lett 26:1777–1780CrossRefGoogle Scholar
  34. 34.
    Viklund F, Alander J, Hult K (2003) Antioxidative properties and enzymatic synthesis of ascorbyl FA esters. J Am Oil Chem Soc 80:795–799CrossRefGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • D. Reyes-Duarte
    • 1
    • 2
  • N. Lopez-Cortes
    • 1
  • P. Torres
    • 1
  • F. Comelles
    • 3
  • J. L. Parra
    • 3
  • S. Peña
    • 4
  • A. V. Ugidos
    • 4
  • A. Ballesteros
    • 1
  • F. J. Plou
    • 1
    Email author
  1. 1.Departamento de BiocatálisisInstituto de Catálisis y Petroleoquímica, CSICMadridSpain
  2. 2.Departamento de Procesos y TecnologíaUniversidad Autónoma Metropolitana (UAM), Unidad CuajimalpaMéxico, DFMéxico
  3. 3.Departamento de TensioactivosInstituto de Química Avanzada de Cataluña, CSICBarcelonaSpain
  4. 4.Biotecnologías Aplicadas BTSAFuenlabradaSpain

Personalised recommendations