Journal of the American Oil Chemists' Society

, Volume 87, Issue 2, pp 133–145 | Cite as

Effect of Cooling Rate on the Structural and Moisture Barrier Properties of High and Low Melting Point Fats

  • Claire Bourlieu
  • Valérie Guillard
  • Mariana Ferreira
  • Hugh Powell
  • Baltasar Vallès-Pàmies
  • Stéphane Guilbert
  • Nathalie Gontard
Original Paper


The effect of three cooling rates (rapid, intermediate and slow CR) on the moisture barrier properties and on the physical state of acetylated and high melting point hydrophobic self-supported moisture barriers has been investigated. The selected CR were representative of industrial processing conditions and the selected barrier materials of common effective GRAS substances (acetomonopalmitin, white beeswax, two commercial blends of beeswax and acetylated glycerides and a blend of palmitic/stearic acids). Variations of CR affected crystallisation kinetics, SFC in an extend depending on the fat chemical composition and degree of undercooling, crystal size and ratio of polymorphs present in the materials. It did not have major influence on the contact angles with water measured at the surface of the materials and on the mass–volume area properties of the material. The resultant effect on the macroscopic moisture barrier properties of the materials were evaluated using water vapour permeability (WVP) measurements. The CR had no significant effect on the WVP, except for one blend of acetylated fat and beeswax for which a slow CR may have favoured the healing of imperfections. The variations of WVP between all materials and CRs were mainly attributed to variation in materials polarity using multivariable analysis.


Lipid barriers Water vapour permeability Cooling rate X-ray diffraction Solid fat content Mass–volume area related properties 





Cooling rate


Apparent density


True density


Generally recognised as safe


Melting point


Palmitic/stearic acid blend


Relative humidity


Scanning electron microscopy


Solid fat content


Wax/acetic acid ester of mono and diglycerides


Water vapour permeability


X-ray diffraction

List of symbols


Area of exposed film

α, β′, β

Hexagonal, orthorhombic and triclinic subcell lateral packings


Interplanar crystal lattice distance


Slope of water weight versus time


The film thickness




Avrami constant


Molecular mass of water


Avrami exponent or index of crystallisation


the saturating water vapour pressure of water at constant considered temperature


Water activity


  1. 1.
    McHugh TH, Krochta JM (1994) Permeability properties of edible films. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible films and coatings to improve food quality. Technomic Publishing Company, Lancaster, pp 139–187Google Scholar
  2. 2.
    Shellhammer TH, Rumsey TR, Krochta JM (1997) Viscoelastic properties of edible lipids. J Food Eng 33:305–320CrossRefGoogle Scholar
  3. 3.
    Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A (2002) Factors affecting the moisture permeability of lipid-based edible films: a review. Crit Rev Food Sci Nutr 42:67–89CrossRefGoogle Scholar
  4. 4.
    Bourlieu C, Guillard V, Powell H, Vallès-Pàmies B, Guilbert S, Gontard N (2009) Edible moisture barriers: how to assess of their potentials and limits in food products shelf-life extension? Crit Rev Food Sci Nutr 49:474–499CrossRefGoogle Scholar
  5. 5.
    Guillard V, Guillbert S, Bonazzi C, Gontard N (2004) Edible acetylated monoglyceride films: effect of film-forming technique on moisture barrier properties. J Am Oil Chem Soc 81:1053–1058CrossRefGoogle Scholar
  6. 6.
    Bourlieu C, Ferreira M, Barea B, Guillard V, Villeneuve P, Guilbert S, Gontard N (2009) Moisture barrier and physical properties of acetylated derivatives with increasing acetylation degree. Eur J lipid Sci Techn 111(5):489–498CrossRefGoogle Scholar
  7. 7.
    Martin-Polo M, Mauguin C, Voilley A (1992) Hydrophobic films and their efficiency against moisture transfer. 1. Influence of the film preparation technique. J Agric Food Chem 40:407–412CrossRefGoogle Scholar
  8. 8.
    Lovegren NV, Feuge RO (1954) Permeability of acetostearin products to water vapor. J Agric Food Chem 2:558–563CrossRefGoogle Scholar
  9. 9.
    Landmann W, Lovegren NV, Feuge RO (1960) Permeability of some fat products to moisture. J Am Oil Chem Soc 37(1):1–4CrossRefGoogle Scholar
  10. 10.
    Kester JJ, Fennema O (1989) The influence of polymorphic form on oxygen and water-vapor transmission through lipid films. J Am Oil Chem Soc 66:1147–1153CrossRefGoogle Scholar
  11. 11.
    Donhowe IG, Fennema O (1993) Water-vapor and oxygen permeability of wax films. J Am Oil Chem Soc 70:867–873CrossRefGoogle Scholar
  12. 12.
    Sato K (2001) Crystallization behaviour of fats and lipids—a review. Chem Eng Sci 56:2255–2265CrossRefGoogle Scholar
  13. 13.
    Fox RC (1958) The relationship of wax crystal structure to the water vapor transmission rate of wax films. TAPPI 41:283–289Google Scholar
  14. 14.
    Kester JJ, Fennema O (1989) Tempering influence on oxygen and water vapor transmission through a stearyl alcohol film. J Am Oil Chem Soc 66:1154–1157CrossRefGoogle Scholar
  15. 15.
    Martini S, Kim DA, Ollivon M, Marangoni AG (2006) Structural factors responsible for the permeability of water vapor through fat barrier films. Food Res Int 39:550–558CrossRefGoogle Scholar
  16. 16.
    Martini S, Kim DA, Ollivon M, Marangoni AG (2006) The water vapor permeability of polycrystalline fat barrier films. J Agric Food Chem 54:1880–1886CrossRefGoogle Scholar
  17. 17.
    Campos R, Narine SS, Marangoni AG (2002) Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Res Int 35:971–981CrossRefGoogle Scholar
  18. 18.
    Ollivon M, Perron R (1992) Chapitre IV. Propriétés chimiques des corps gras. In: Karleskind A (ed) Manuel des corps gras. Tec & Doc, Lavoisier, Paris, pp 433–529Google Scholar
  19. 19.
    Burton Z, Bhushan B (2006) Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 106:709–719CrossRefGoogle Scholar
  20. 20.
    Morillon V, Debeaufort F, Capelle M, Blond G, Voilley A (2000) Influence of the physical state of water on the barrier properties of hydrophilic and hydrophobic films. J Agric Food Chem 48:11–16CrossRefGoogle Scholar
  21. 21.
    Lide DR (1972) Handbook of chemistry and physics. 53rd edn. CRC (Chemical Rubber Company) Press, ClevelandGoogle Scholar
  22. 22.
    Guillard V, Broyart B, Bonazzi C, Guilbert S, Gontard N (2003) Preventing moisture transfer in a composite food using edible films: Experimental and mathematical study. J Food Sci 68:2267–2277CrossRefGoogle Scholar

Copyright information

© AOCS 2009

Authors and Affiliations

  • Claire Bourlieu
    • 1
    • 4
  • Valérie Guillard
    • 1
    • 5
  • Mariana Ferreira
    • 1
  • Hugh Powell
    • 2
  • Baltasar Vallès-Pàmies
    • 3
  • Stéphane Guilbert
    • 1
  • Nathalie Gontard
    • 1
  1. 1.UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, CIRAD, INRA, Montpellier SupAgro, Université Montpellier 2MontpellierFrance
  2. 2.Science GroupNestlé Product Technology Centre,York (Nestec York Ltd)YorkUK
  3. 3.Liquid ProductsNestlé Research CenterLausanneSwitzerland
  4. 4.UMR 1253 STLORennesFrance
  5. 5.UMR IATE, Université de Montpellier II, Bat 15. 4° étage CC 023Cedex 05 MontpellierFrance

Personalised recommendations