, Volume 34, Issue 12, pp 1243–1271 | Cite as

Lipids in human milk



I have reviewed recent (March 1995–December 1997) papers on human milk lipids including many on fatty acid (FA) composition. The effects of maternal diets on the profiles are apparent. However, more data on the composition of milk lipids are needed. It is noteworthy that so few papers on milk FA composition have reported analyses using high-resolution gas-liquid chromatography columns. Two of these were on milk from women in North America. The diets in North America are varied and the number of analyses few. We do not have a reliable data base showing the ranges of biologically important acids. Except for the gangliosides, few new data on the other lipids appeared during this period.



bile salt-stimulated lipase




cholesteryl ester


conjugated linoleic acid


docosahexaenoic acid


diglyceride, diacylglycerol


fatty acid


fatt acid methyl ester


free fatty acid


gas-liquid chromatography




high-performance liquid chromatography


lipid-bound sialic acid


long-chain polyunsaturated fatty acids


low density lipoproteins


monoglyceride, monoacylglycerol


milk lipid globule membrane


melting point


mean melting point


mass spectrometry




polyunsaturated fatty acid


triglyceride, triacylglycerol


thin-layer chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jensen, R.G. (1996) The Lipids in Human Milk, Prog. Lipid Res. 35, 53–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Keenan, T.W., and Patton, S. (1995) The Milk Lipid Globule Membrane, in The Handbook of Milk Composition (Jensen, R.G., ed.), pp. 5–50, Academic Press, San Diego.Google Scholar
  3. 3.
    Ferris, A.M., and Jensen, R.G. (1984) Lipids in Human Milk: A Review 1. Sampling, Determination, and Content, J. Pediatr. Gastroenterol. Nutr. 3, 100–122.Google Scholar
  4. 4.
    Neville, M.C. (1995) Sampling and Storage of Human Milk, in The Handbook of Milk Composition (Jensen, R.G., ed.) pp. 63–78, Academic Press, San Diego.Google Scholar
  5. 5.
    Jensen, R.G., Lammi-Keefe, C.J., and Koletzko, B. (1997) Representative Sampling of Human Milk and the Extraction of Fat for Analysis of Environmental Lipophilic Contaminants, Toxicol. Environ. Chem. 62, 229–247.Google Scholar
  6. 6.
    Quinsey, P.M., Donohue, P.C., Cumming, F.J., and Ahokas, J.T. (1996) The Importance of Measured Exposure of Breast-Fed Infants to Organochlorines, Eur. J. Clin. Nutr. 50, 438–442.PubMedGoogle Scholar
  7. 7.
    Neville, M.C. (1995) Volume and Caloric Density of Human Milk, in The Handbook of Milk Composition (Jensen, R.G., ed.) pp. 99–113, Academic Press, San Diego.Google Scholar
  8. 8.
    Villalpando, S., del Prado-Manriquez, M., Stafford, J., and Delgado, G. (1996) Diurnal Variations in the Fatty Acid Composition of Milk Fat from Marginally Nourished Women, Arch. Med. Res. 26, S139-S143.Google Scholar
  9. 9.
    Jensen, R.G., Bitman, J., Wood, D.L., Hamosh, M., Clandinin, M.T., and Clark, R.M. (1985) Methods for the Analysis of Human Milk Lipids, in Human Lactation: Milk Components and Methodologies (Jensen, R.G., and Neville, M.C., eds.), pp. 97–112, Plenum Press, New York.Google Scholar
  10. 10.
    Lucas, A., Gibbs, J.A.H., Lyster, R.L.J., and Baum, J.D. (1980) Simple Clinical Technique for Estimating Fat Concentration and Energy Value of Human Milk, Br. Med. J. 1, 1018–1020.CrossRefGoogle Scholar
  11. 11.
    Clark, R.M., Ferris, A.M., Fey, M., Brown, R.B., Hundreiser, K.E., and Jensen, R.G. (1982) Changes in the Lipids of Human Milk from 2 to 6 Weeks Postpartum, J. Pediatr. Gastroenterol. Nutr. 1, 311–315.PubMedGoogle Scholar
  12. 12.
    Collins, S.E., Jackson, M.B., Lammi-Keefe, C.J., and Jensen, R.G. (1989) The Simultaneous Separation and Quantitation of Human Milk Lipids, Lipids 24, 746–749.PubMedGoogle Scholar
  13. 13.
    Jensen, R.G., Bitman, J., Carlson, S.E., Couch, S.C., Hamosh, M., and Newburg, D.S. (1995) Human Milk Lipids, in The Handbook of Milk Composition (Jensen, R.G., ed.), pp. 495–542, Academic Press, San Diego.Google Scholar
  14. 14.
    Michaelsen, K.F., Skafte, L., Badsberg, J.H., and Jorgensen, M. (1990) Variation in Micronutrients in Human Bank Milk: Influencing Factors and Implications for Human Milk Banking, J. Pediatr. Gastroenterol. Nutr. 11, 229–239.PubMedGoogle Scholar
  15. 15.
    Bitman, J., Wood, D.L., Hamosh, M., Hamosh, P., and Mehta, N.R. (1983) Comparison of the Lipid Composition of Breast Milk from Mothers of Term and Preterm Infants, Am. J. Clin. Nutr. 38, 300–312.PubMedGoogle Scholar
  16. 16.
    Bitman, J., Wood, D.L., Mehta, N.R., Hamosh, P., and Hamosh, M. (1985) Comparison of the Cholesteryl Ester Composition of Human Milk from Preterm and Term Mothers, J. Pediatr. Gastroenterol. Nutr. 5, 780–786.Google Scholar
  17. 17.
    Bracco, U. (1994) Effect of Triglyceride Structure on Fat Absorption, Am. J. Clin. Nutr. 60, 1002S-1009S.PubMedGoogle Scholar
  18. 18.
    Hamosh, M. (1995) Lipid Metabolism in Pediatric Nutrition, Pediatr. Clin. North Am. 42, 839–859.PubMedGoogle Scholar
  19. 19.
    Timmen, H., and Patton, S. (1988) Milk Fat Globules: Fatty Acid Composition, Size and in Vivo Regulation of Fat Liquidity, Lipids 23, 685–689.PubMedGoogle Scholar
  20. 20.
    Holman, R.T., Johnson, S.B., and Ogburn, P.L. (1991) Deficiency of Essential Fatty Acids and Membrane Fluidity During Pregnancy and Lactation, Proc. Natl. Acad. Sci. 88, 4835–4839.PubMedCrossRefGoogle Scholar
  21. 21.
    Brown, J.B., and Orlans, B.M. (1946) The Fatty Acids of Human Milk Fat, Arch. Biochem. 9, 201–219.Google Scholar
  22. 22.
    Martin, J.-M., Bougnoux, P., Antoine, J.-M., and Lanson, M. (1993) Triacylglycerol Structure of Human Colostrum and Mature Milk, Lipids 28, 637–643.PubMedGoogle Scholar
  23. 23.
    Jensen, R.G., Ferris, A.M., Lammi-Keefe, C.J., Stewart, C.A., and DelSavio, G.C. (1990) Hypocholesterolemic Human Milk, J. Pediatr. Gastroenterol. Nutr. 10, 148–150.PubMedGoogle Scholar
  24. 24.
    Carnielli, V.P., Luijendijk, I.H.T., VanGoudoever, J.B., Sulkers, E.J., Boerlage, A.A., Degenhart, H.J., and Sauer, P.J.J.C. (1996) Structural Position and the Amount of Palmitic Acid in Infant Formulas: Effects on Fat, Fatty Acid, and Mineral Balance, J. Pediatr. Gastroenterol. Nutr. 23, 553–560.PubMedCrossRefGoogle Scholar
  25. 25.
    Breckenridge, W.C., and Kuksis, A. (1967) Molecular Weight Distributions of Milk Fat Triglycerides of Seven Species, J. Lipid Res. 8, 473–478.PubMedGoogle Scholar
  26. 26.
    Breckenridge, W.C., Marai, L., and Kuksis A. (1969) Triglyceride Structure of Human Milk Fat, Can. J. Biochem. 47, 761–769.PubMedGoogle Scholar
  27. 27.
    Kuksis, A., and Breckenridge, W.C. (1968). Triglyceride Composition of Milk Fats, in Dairy Lipids and Lipid Metabolism (Brink, M.F., and Kritchevsky, D., eds.), pp. 28–98, AVI Publishing Co., Westport, CT.Google Scholar
  28. 28.
    Winter, C.H., Hoving, E.B., and Muskiet, A.J. (1993) Fatty Acid Composition of Human Milk Triglyceride Species, J. Chromatogr. 616, 9–24.PubMedGoogle Scholar
  29. 29.
    Currie, G.J., and Kallio, H. (1993) Triacylglycerols of Human Milk: Rapid Analysis by Ammonia Negative Ion Tandem Mass Spectrometry, Lipids 28, 217–222.PubMedGoogle Scholar
  30. 30.
    Jensen, R.G., and Hamosh, M. (1996). Selectivity of Lipases: Types and Determination, in Engineering of/with Lipases (Malcata, F.X., ed.), pp. 17–29, Kluwer Academic Publishing.Google Scholar
  31. 31.
    Hernell, O., and Blackberg, L. (1997). Digestion, and Absorption of Human Milk Lipids, Encycl. Hum. Biol. 3, 319–328.Google Scholar
  32. 32.
    Armand, M., Hamosh, M., Mehta, N.R., Angelus, P.A., Philpott, J.R., Henderson, T.R., Duyer, N.K., Lairun, D., and Hamosh, P. (1996) Effect of Human Milk or Formula on Gastric Function and Fat Digestion in the Premature Infant, Pediatr. Res. 40, 429–437.PubMedGoogle Scholar
  33. 33.
    Isaacs, C.E., Litou, R.E., and Thormar, H. (1995) Antimicrobial Activity of Lipids Added to Human Milk, Infant Formula, and Bovine Milk, Nutr. Biochem. 6, 362–366.CrossRefGoogle Scholar
  34. 34.
    Innis, S.M., Dyer, R., and Nelson, C.M. (1994) Evidence That Palmitic Acid Is Absorbed as sn-2 Monoacylglycerol from Human Milk by Breast-Fed Infants, Lipids 29, 541–545.PubMedGoogle Scholar
  35. 35.
    Chen, Q., Blacksberg, L., Nilsson, A., Stornby, B., and Hernell, O. (1994) Digestion of Triacylglycerol Containing Long-Chain Polyenoic Fatty Acids in vitro by Colipase-Dependent Pancreatic Lipase and Human Milk Bile-Salt Stimulated Lipase, Biochim. Biophys. Acta 1210, 239–243.PubMedGoogle Scholar
  36. 36.
    Glew, R.H., Omene, J.A., Vignetti, S., D’Amico, M., and Evans, R.W. (1995) Fatty Acid Composition of Breast Milk Lipids of Nigerian Women, Nutr. Res. 15, 477–489.CrossRefGoogle Scholar
  37. 37.
    Bitman, J., Wood, D.L., Mehta, N.S., Hamosh, P., and Hamosh, M. (1984) Comparison of the Phospholipid Composition of Breast Milk from Mothers of Term and Preterm Infants During Lactation, Am. J. Clin. Nutr. 40, 1108–1119.Google Scholar
  38. 38.
    Hundrieser, K.E., Clark, R.M., and Jensen, R.G. (1985) Total Phospholipid Analysis in Human Milk without Acid Digestion, Am. J. Clin. Nutr. 41, 988–993.PubMedGoogle Scholar
  39. 39.
    Harzer, G., Hang, M., Dieterich, I., and Gentner, P. (1983) Changing Patterns of Human Milk Lipids in the Course of Lactation and During the Day, Am. J. Clin. Nutr. 37, 612–621.PubMedGoogle Scholar
  40. 40.
    Hundreiser, K.M., and Clark, R.M. (1988) A Method for Separation of Phospholipid Classes in Human Milk, J. Dairy Sci. 7, 61–67.Google Scholar
  41. 41.
    van Beusekom, C.M., Martini, I.A., Rutgers, H.K., Boersma, E.R., and Muskiet, F.A.J. (1990) A Carbohydrate-Rich Diet Not Only Leads to Incorporation of Medium-Chain Fatty Acids (6∶0–14∶0) in Milk Triglycerides but Also in Each Milk Phospholipid Subclass, Am. J. Clin. Nutr. 52, 326–334.PubMedGoogle Scholar
  42. 42.
    Yonekubo, A., Arima, H., and Yamamoto, Y. (1987) The Composition of Japanese Human Milk(III)-Polunsaturated Fatty Acid Composition and Sterol and Phospholipid Contents, Sukusuka Press, Meiji Milk Products Formula Co., Ltd. (English version of paper published in J. Child Health 46, 349–352, 1987).Google Scholar
  43. 43.
    Idota, F., Sakurai, T., Sugawara, M., Matuoka, Y., Ishiyama, Y., Murakami, Y., Moriguchi, H., Takuchi, M., Shimoda, K., and Asai, Y. (1991) The Latest Survey for the Composition of Human Milk Obtained from Japanese Mothers. Part II. Changes in Fatty Acid Composition, Phospholipid and Cholesterol Contents During Lactation, Jpn. J. Pediatr. Gastroenterol. Nutr. 5, 159–173.Google Scholar
  44. 44.
    Holmes-McNary, M.Q., Cheng, W.-L., Mar, M.-H., Fussell, S., and Zeisel, S.H. (1996) Choline and Choline Esters in Human and Rat Milk and in Infant Formulas, Am. J. Clin. Nutr. 64, 572–576.PubMedGoogle Scholar
  45. 45.
    Hallgren, B., Niklasson, A., Stallberg, G., and Thorin, H. (1978) On the Occurrence of 1-0-Alkylglycerols and 1-0-(-2-2methoxyalkyl) Glycerols in Human Colostrum, Human Milk, Cow’s Milk, Sheep’s Milk, Human Bone Marrow, Red Cells Blood Plasma and a Uterine Carcinoma, Acta Chem. Scand. B28, 1029–1034.Google Scholar
  46. 46.
    Kuksis, A., Marai, L., Myher, J.J., Cerbulis, J., and Farrell, H.M., Jr. (1986) Comparative Study of the Molecular Species of Chloropropanediol Diesters and Triacylglycerols in Milk Fat, Lipids 21, 183–190.PubMedGoogle Scholar
  47. 47.
    Bouhours, J.-F., and Bouhours, D. (1981) Ceramide Structure of Sphingomyelin from Human Milk Fat Globule Membranes, Lipids, 16, 726–731.PubMedGoogle Scholar
  48. 48.
    Ziesel, S.H., Char, D., and Sheard, M.F. (1986) Choline, Phosphatidylcholine and Sphingomyelin in Human and Bovine Milk and Infant Formula, J. Nutr. 116, 50–58.Google Scholar
  49. 49.
    Grimmonprez, L., and Montreuil, J. (1977) Étude des Fractions Glycanniques des Glycosphingolipides Totaux de la Membrane des Globules Lipidiques de Lait de Femme, Biochimie 59, 899–908.PubMedGoogle Scholar
  50. 50.
    Bouhours, J.-F., and Bouhours, D. (1979) Galactosylceramide is the Major Cerebroside of Human Milk Fat Globule Membrane, Biochem. Biophys. Res. Commun. 88, 1217–1222.PubMedGoogle Scholar
  51. 51.
    Laegreid, A., Otnaess, A.B.B., and Fugelsang, J. (1986) Human and Bovine Milks: Comparison of Ganglioside Compositions and Enterotoxin Inhibitory Activity, Pediatr. Res. 20, 416–420.PubMedGoogle Scholar
  52. 52.
    Takamizawa, K., Iwamori, M., Mutai, M., and Nagai, Y. (1986) Selective Changes in Gangliosides of Human Milk for the Period of Lactation, Biochim. Biophys. Acta 879, 73–77.PubMedGoogle Scholar
  53. 53.
    Rueda, R., Puente, R., Hueso, P., Maldonado, J., and Gil, A. (1995) New Data on Content and Distribution of Gangliosides in Human Milk, Biol. Chem. Hoppe-Seyler 376, 723–727.PubMedGoogle Scholar
  54. 54.
    Newberg, D.S., and Chaturvedi, P. (1997) Sulfated Glycolipids in Human Milk, Am. Pediatr. Soc., Pediatr. Res. Abstr. Presented at meeting.Google Scholar
  55. 55.
    Newburg, D.S., and Chaturvedi (1992) Neutral Glycolipids of Human and Bovine Milk, Lipids 27, 923–927.PubMedGoogle Scholar
  56. 56.
    Newburg, D.S., Ashkenazi, S., and Cleary, T.G. (1992) Human Milk Contains the Shiga Toxin and Shiga-Like Toxin Receptor, Glycolipid Gb3, J. Infect. Dis. 166, 832–836.PubMedGoogle Scholar
  57. 57.
    Kolsto-Otnaess, A.B. (1989) Nonimmunoglobulin in Human Milk—Candidates for Prophylaxis Against Infections, in Protein and Non-Protein, in Human Milk (Atkinson, S.A., and Lonnerdal, B., eds.), pp. 211–220 CRC Press, Boca Raton.Google Scholar
  58. 58.
    Svennerholm, L. (1980) Ganglioside Metabolism, in Comprehensive Biochemistry (Florkin, M., and Stotz, E.H. eds.), Vol. 18, pp. 201–227, Elsevier, Amsterdam.Google Scholar
  59. 59.
    Keenan, T.W. and Patton, S. (1995) The Milk Lipid Globule Membrane, in The Handbook of Milk Composition (Jensen, R.G., ed), pp. 5–50, Academic Press, Inc., San Diego.Google Scholar
  60. 60.
    Rueda, R., Garcia-Salmeron, J.L., Maldonado, J., and Gil, A. (1996) Changes During Lactation in Ganglioside Distribution in Human Milk from Mothers Delivering Preterm and Term Infants, Biol. Chem. 377, 599–601.PubMedGoogle Scholar
  61. 61.
    Rueda, R., Maldonado, J., and Gil, A. (1996) Comparison of Content of and Distribution of Human Milk Gangliosides from Spanish and Panamanian Mothers, Ann. Nutr. Metab. 40, 194–201.PubMedGoogle Scholar
  62. 62.
    Jumpsen, J., and Clandinin, M.T. (1995) Brain Development: Relationship to Lipid and Lipid Metabolism, AOCS Press, Champaign.Google Scholar
  63. 63.
    Huisman, M., van Beusekom, C.M., Lantins, C.I., Nijeboor, N.J., Muskiet, F.A.J., and Boersma, E.R. (1995) Triglycerides, Fatty Acids, Sterols, Mono- and Disaccharides and Sugar Alcohols in Human Milk and Current Types of Infant Formula Milk, Eur. J. Clin. Nutr. 50, 255–260.Google Scholar
  64. 64.
    Bachman, K.C., and Wilcox, C.J. (1976) Factors That Influence Milk Cholesterol and Lipid Phosphorus: Content and Distribution, J. Dairy Sci. 59, 1381–1387.PubMedGoogle Scholar
  65. 65.
    Kallio, M.T.J., Siims, M.A., Perheentupa, J., Salmenpeera, L., and Miettanen, T.A. (1989) Cholesterol and Its Precursors in Human Milk During Prolonged Exclusive Breast Feeding, Am. J. Clin. Nutr. 50, 782–785.PubMedGoogle Scholar
  66. 66.
    Bracco, U., Hidalgo, J., and Bohren, H. (1973) Lipid Composition of the Fat Globule Membrane of Bovine and Human Milk, J. Dairy Sci. 55, 155–172.Google Scholar
  67. 67.
    Haug, M., and Harzer, G. (1984) Cholesterol and Other Sterols in Human Milk, J. Pediatr. Gastroenterol. Nutr. 3, 816–817.PubMedGoogle Scholar
  68. 68.
    Lammi-Keefe, C.J. (1995) Vitamins D and E in Human Milk, in The Handbook of Milk Composition (Jensen, R.G., ed.), pp. 706–717, Academic Press, San Diego.Google Scholar
  69. 69.
    Koldovsky, O., and Strbak, V. (1995) Hormones and Growth Factors in Human Milk, in The Handbook of Milk Composition (Jensen, R.G., ed.), pp. 428–435, Academic Press, San Diego.Google Scholar
  70. 70.
    Jensen, R.G., Lammi-Keefe, C.J., Ferris, A.M., Jackson, M.B., Couch, S.C., Capacchione, C.M., Ahn, H.S., and Murtaugh, M. (1990) Human Milk, total Lipid and Cholesterol Are Dependent on Interval of Sampling During 24 Hours, J. Pediatr. Gastroenterol. Nutr. 20, 91–94.Google Scholar
  71. 71.
    Wong, W.W., Hachey, D.L., Insull, W., Opekun, A.R., and Klein, P.D. (1993) Effect of Dietary Cholesterol on Cholesterol Synthesis in Breast-Fed and Formula-Fed Infants J. Lipid Res. 34, 1403–1411.PubMedGoogle Scholar
  72. 72.
    Boersma, E.R., Offringa, R.P.J., Muskiet, F.A.J., Cheere, M.W., and Simmons, I.J. (1991) Vitamin E, Lipid Fractions, and Fatty Acid Composition of Colostrum, Transitional Milk, and Mature Milk: An International Collaborative Study, Am. J. Clin. Nutr. 53, 1197–1204.PubMedGoogle Scholar
  73. 73.
    Reiser, R., O’Brien, B.C., Henderson, G.R., and Moore, G.R. (1979) Studies on a Possible Function of Cholesterol in Milk, Nutr. Rep. Int. 19, 835–849.Google Scholar
  74. 74.
    Mott, G.E., DeLallo, L., Driscoll, D.M., McMahan, C.A., and Lewis, D.S. (1993) Influence of Breast and Formula Feeding on Hepatic Concentrations of Apolipoprotein and Low-Density Lipoprotein Receptor in RNA, Biochim. Biophys. Acta 1169, 59–65.PubMedGoogle Scholar
  75. 75.
    Katoku, Y., Yamada, M., Yonekubo, A., Kuwata, T., Kobayoshi, A., and Sawa, A. (1996) Effect of the Cholesterol Content of a Formula on the Lipid Composition of Plasma Lipoproteins and Red Blood Cell Membranes in Early Infancy, Am. J. Clin. Nutr. 64, 871–877.PubMedGoogle Scholar
  76. 76.
    Boehm, G., Moro, G., Muller, D.M., Raffler, G., and Minoli, I. (1995) Fecal Cholesterol Excretion in Preterm Infants Fed Breast Milk or Formula with Different Cholesterol Contents, Acta Paediatr. 84, 240–244.PubMedGoogle Scholar
  77. 77.
    Routi, T., Ronnemaa, T., Lapinleimu, H., Salo, P., Vikari, J., Leino, A., Valimaki, I., Jakinen, E., Valimaki, I., Jokeni, E., and Simell, O. (1995) Effect of Weaning on Serum Lipoprotein(a) Concentration: The STRIP Baby Study, Pediatr. Res. 38, 522–527.PubMedGoogle Scholar
  78. 78.
    Cruz, M.L.A., Wong, W.W., Mimouni, F., Hachey, D.L., Setchell, K.D.R., Klein, P.D., and Tsang, R.C. (1994) Effects of Infant Nutrition on Cholesterol Synthesis Rates, Pediatr. Res. 35, 135–140.PubMedGoogle Scholar
  79. 79.
    Franke, A., and Custer, L.J. (1996) Daidzein and Genistein Concentrations in Human Milk After Soy Consumption, Clin. Chem. 42, 955–964.PubMedGoogle Scholar
  80. 80.
    Jensen, R.G. (1989) The Lipids of Human Milk, CRC Press, Boca Raton.Google Scholar
  81. 81.
    Clark, R.M., and Roche, M.E. (1990) Gas Chromatographic Procedure for Measuring Total Lipids in Breast Milk, J. Pediatr. Gastroenterol. Nutr. 10, 271–272.PubMedCrossRefGoogle Scholar
  82. 82.
    Kohn, G., Ploeg, P., van der, Mobius, M., and Sawatzki, G. (1996) Influence of the Derivatization Procedure on the Results of the Gas Chromatographic Fatty Acid Analysis of Human Milk and Infant Formula, Z. Ehrnahrwissensch 35, 226–234.Google Scholar
  83. 83.
    Christie, W.W. (1989) Gas Chromatography and Lipids, pp. 64–71, The Oily Press, Ayr.Google Scholar
  84. 84.
    Lepage, G., and Roy, C.C. (1984) Improved Recovery of Fatty Acids Through Direct Transesterification Without Prior Extraction or Purification, J. Lipid Res. 25, 1391–1396.PubMedGoogle Scholar
  85. 85.
    Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethyacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.PubMedGoogle Scholar
  86. 86.
    Stoffel, W., Chu, F., and Ahrens, E.H. (1959) Analysis of Long-Chain Fatty Acids by Gas-Liquid Chromatography. Micromethod for Preparation of methyl Esters, Anal. Chem. 31, 307–308.CrossRefGoogle Scholar
  87. 87.
    Kramer, J.K.G., Fellner, V., Dugon, M.E.R., Sauer, F.D., Mossoba, M.M., and Yurawecz, M.P. (1997) Evaluating Acid and Base Catalysts in the Methylation of Milk and Rumen Fatty Acids with Special Emphasis on Conjugated Dienes and Total trans Fatty Acids, Lipids 32, 1219–1228.PubMedCrossRefGoogle Scholar
  88. 88.
    Takayama, M. (1994) Simple Analysis of Fatty Acids of Human Milk by HPLC, Jpn. J. Clin. Pathol. 42, 873–877.Google Scholar
  89. 89.
    Carpenter, D.E., Ngeh-Ngwainbi, I., and Lee, S. (1993) Lipid Analysis, in Methods of Analysis for Nutrition Analysis (Sullivan, D.M., and Carpenter, D.E., eds.), pp. 85–104, AOAC International, Arlington.Google Scholar
  90. 90.
    Glass, R.L., and Christopherson, S.W. (1969) A Method for the Differential Analysis of Mixtures of Esterified and Free Fatty Acids, Chem. Phys. Lipids 3, 405–408.CrossRefGoogle Scholar
  91. 91.
    Neville, M.C., and Picciano, M.D. (1997) Regulation of Milk Lipid Secretion and Composition, Annu. Rev. Nutr. 17, 159–184.PubMedCrossRefGoogle Scholar
  92. 92.
    Idota, T., Sakurai, M., Sugawara, Y., Ishiyama, Y., Murakami, Y., Moriguchi, H., Takeuchi, M., Shimoda, K., and Asai, Y. (1991) The Latest Survey for the Composition of Milk Obtained from Japanese Mothers. Part II. Changes of Fatty Acid Composition, Phospholipid and Cholesterol Contents During Lactation, Jpn. J. Pediatr. Gastroenterol. Nutr. 5, 159–173.Google Scholar
  93. 93.
    Gere, A., Bernolak, E.A., Gaal, O., Cholnoky, P., and Ory, I. (1983) Fatty Acid Composition of Human Milk and Milk-Based Formulas in Hungary, Acta Paediatr. Hungar. 24, 53–61.Google Scholar
  94. 94.
    Dagnelie, P.C., van Staversen, W.A., Roose, A.H., Tuinstra, L.G.M.T., and Burema, Jr. (1992) Nutrients and Contaminants in Human Milk from Mothers on Macrobiotic and Omnivorous Diets, Eur. J. Clin. Nutr. 46, 355–366.PubMedGoogle Scholar
  95. 95.
    Ogunleye, A., Fakoya, A.T., Miizeki, S., Tojo, H., Sasajima, I., Kobayashi, M., Tateishi, S., and Yamaguchi, K. (1991) Fatty Acid Composition of Breast Milk from Nigerian and Japanese Women, J. Nutr. Sci. Vitaminol. 37, 435–442.PubMedGoogle Scholar
  96. 96.
    Budowski, P., Druckman, H., and Kaplan, P. (1994) Mature Milk from Israeli Mothers is Rich in Polyunsaturated Fatty Acids; Fatty Acids and Lipids: Biological Aspects, World Rev. Nutr. Diet. 75, 105–108.PubMedGoogle Scholar
  97. 97.
    Chen, Z.-Y., Pelletier, G., Hollywood, R., and Ratnayake, W.M.N. (1995) Trans Fatty Acid Isomers in Canadian Human Milk, Lipids 30, 15–21.PubMedGoogle Scholar
  98. 98.
    Chardigny, J.-M., Wolff, R.L., Sébédio, J.-L., Martine, L., and Juaneda, P. (1995) Trans Mono- and Polyunsaturated Fatty Acids in Human Milk, Eur. J. Clin. Nutr. 49, 523–531.PubMedGoogle Scholar
  99. 99.
    Hands, E.S. (1996) Lipid Composition of Selected Foods, in Bailey’s Industrial Oil and Fat Products, Vol. I, 5th edn. (Hui, Y.S., ed.), pp. 444–445, Wiley-Interscience, New York.Google Scholar
  100. 100.
    Koletzko, B., Mrotzek, M., and Bremer, H.J. (1991) Fatty Acid Composition of Mature Human Milk in Nigeria, Z. Ernahrungswiss.-Eur. J. Nutr. 30, 289–297.Google Scholar
  101. 101.
    Laryea, M.D., Leichsenring M., Mrotzek, M., El-Amin, E.O., El-Kharib, A.O., Ahmed, H.M., and Bremer, H.J. (1995). Fatty Acid Composition of the Milk of Well-Nourished Sudanese Women, Int. J. Food Sci. Nutr. 46, 205–214.PubMedGoogle Scholar
  102. 102.
    Chulei, R., Xiaofang, L., Hongsheng, M., Yiulan, M., Guizheng, L., Gianhoug, D., DeFrancesco, C.A., and Connor, W.E. (1995) Milk Composition in Women from Five Different Regions of China: The Great Diversity of Milk Fatty Acids, J. Nutr. 125, 2993–2998.Google Scholar
  103. 103.
    De la Presa-Owens, S., Lopez-Sabater, M.D., and Rivero-Urgell, M. (1996) Fatty Acid Composition of Human Milk in Spain, J. Pediatr. Gastroenterol. Nutr. 22, 180–185.PubMedCrossRefGoogle Scholar
  104. 104.
    Beijers, R.J.W., and Schaafsma, A. (1996) Long-Chain Polyunsaturated Fatty Acid Content in Dutch Preterm Breast Milk; Differences in the Concentrations of Docosahexaenoic Acid and Arachidonic Acid Due to Length of Gestation, Early Hum. Dev. 44, 215–223.PubMedCrossRefGoogle Scholar
  105. 105.
    Genzel-Boroviczeny, O., Wabel, J., and Koletzko, B. (1997) Fatty Acid Composition of Human Milk During the First Month After Term and Preterm Delivery, Eur. J. Pediatr 156, 142–147.PubMedCrossRefGoogle Scholar
  106. 106.
    Desci, T., Tibor, E., and Koletzko, B. (1997) Fatty Acid Composition of Colostrum, Mature Human Milk and Infant Formula, Gyemekgy 48, 18–26.Google Scholar
  107. 107.
    Guesnet, P., Couet, C., Alessandri, J.M., Antoine, J.M. and Durand, G. (1995) Variability in Linoleic Acid (18∶2n−6) Content and 18∶2n−6/18∶3n−3 Ratio in Human Breast Milk in France, Ann. Pediatr. (Paris) 42, 282–286.Google Scholar
  108. 108.
    Makrides, M., Simmer, K., Neumann, M., and Gibson, R. (1995) Changes in the Polyunsaturated Fatty Acids of Breast Milk from Mothers of Full Term Infants Over 30 Weeks of Lactation, Am. J. Clin. Nutr. 61, 1231–1233.PubMedGoogle Scholar
  109. 109.
    Gibson, R.K., and Kneebone, G.M. (1981) Fatty Acid Composition of Human Colostrum and Mature Breast Milk, Am. J. Clin. Nutr. 34, 252–257.PubMedGoogle Scholar
  110. 110.
    Cherian, G., and Sim, J.S. (1996) Changes in the Breast Milk Fatty Acids and Plasma Lipids of Nursing Mothers Following Consumption of n−3 Polyunsaturated Fatty Acid Enriched Eggs, Nutrition 12, 8–12.PubMedCrossRefGoogle Scholar
  111. 111.
    Makrides, M., Neumann, M.A., and Gibson, R.A. (1996) Effect of Maternal Docosahexaenoic Acid (DHA) Supplementation on Breast Milk Composition, Eur. J. Clin. Nutr. 50, 352–357.PubMedGoogle Scholar
  112. 112.
    Al-Othman, A.A., El-Fawaz, J.A., Hewdy, F.M., and Abdullah, N.M. (1996) Fatty Acid Composition of Mature Breast Milk of Saudi Lactating Mothers, Food Chem. 57, 211–215.CrossRefGoogle Scholar
  113. 113.
    Luukkainen, P., Salo, M.K., and Nikkari, T. (1995) The Fatty Acid Composition of Banked Human Milk and Infant Formulas: The Choices of Milk for Feeding Preterm Infants, Eur. J. Pediatrics, 154, 316–319.CrossRefGoogle Scholar
  114. 114.
    Jorgensen, M.H., Lassen, A., and Michaelsen, K.F. (1995) Fatty Acid Composition in Danish Infant Formula Compared to Human Milk, Scand. J. Nutr. 39, 50–54.Google Scholar
  115. 115.
    Sera, G., Marletta, A., Bonacci, W., Campone, F., Bertini, I., Lantieri, P.B., Risso, D., and Ciangherotti, S. (1997) Fatty Acid Composition of Human Milk in Italy, Biol. Neonate 72, 1–8.CrossRefGoogle Scholar
  116. 116.
    Villalpando, S., Del Prado-Manriquez, M., Stafford, J., and Delgado, G. (1995) Diurnal Variations in the Fatty acid Composition of Milk Fat from Marginally Nourished Women, Arch. Med. Res. 25, S139-S143.Google Scholar
  117. 117.
    Kinsella, J.E. (1979) Stearic Acid Metabolism by Mammary Cells, J. Dairy Sci. 53, 1757–1765.CrossRefGoogle Scholar
  118. 118.
    Carlson, S.E., Clandinin, M.T., Cook, H.W., Emken, E.A., and Filer, L.J., Jr. (1997) Trans Fatty Acids: Infant and Fetal Development, Am. J. Clin. Nutr. 66, 717S-736S.Google Scholar
  119. 119.
    Precht, D., and Molkentin, J. (1996) Rapid Analysis of the Isomers of trans-Octadecenoic Acid in Milk Fat, Int. Dairy J. 6, 791–809.CrossRefGoogle Scholar
  120. 120.
    Craig-Schmidt, M.C., Weete, M.C., Faircloth, J.D., Wickwire, M.A., and Livant, E.J. (1984) The Effect of Dietary Fat in the Diet of Nursing Mothers on Lipid Composition and Prostaglandin Content of Human Milk, Am. J. Clin. Nutr. 39, 778–786.PubMedGoogle Scholar
  121. 121.
    Jensen, R.G., and Lammi-Keefe, C.J. (1998) Cutrent Status of Research on Bovine and Human Milk Lipids, in Lipids in Infant Nutrition (Huang, Y-S., and Sinclair, A.J., eds.), pp. 168–191, AOCS Press, Champaign. Ch. 13.Google Scholar
  122. 122.
    Aitchison, J.M., Dunkley, W.L., Canolty, N.L., and Smith, L.M. (1977) Influence of Diet on trans Fatty Acids in Human Milk, Am. J. Clin. Nutr. 30, 2006–2015.PubMedGoogle Scholar
  123. 123.
    Picciano, M.F., and Perkins, E.G. (1977) Identification of trans Isomers of Octadecenoic Acid in Human Milk, Lipids 12, 407–408.PubMedGoogle Scholar
  124. 124.
    Clark, R.M., Ferris, A.M., Hundreiser, K.E., and Jensen, R.G. (1980) The Identity of the Cholesteryl Esters in Human Milk, Lipids 15, 972–974.Google Scholar
  125. 125.
    Hundreiser, K.E., Clark, R.M., and Brown, P.B. (1983) Distribution of trans-Octadecenoic Acid in the Major Glycerolipids of Human Milk, Lipids 18, 635–639.Google Scholar
  126. 126.
    Finley, D.A., Lonnerdal, B., Dewey, K.G., and Grivetti, L.E. (1985) Breast Milk Composition: Fat Content and Fatty Acid Composition in Vegetarians and Non-Vegetarians, Am. J. Clin. Nutr. 41, 787–800.PubMedGoogle Scholar
  127. 127.
    Homer, D. (1985), Analysis of Milkfat and Modified Milkrat by Gas Chromatography, in Proc. 13th Scandinavian Sumposium on Lipids (Marcuse, R., ed.), pp. 159–165, LipidForum, Göteborg, Sweden.Google Scholar
  128. 128.
    Chappell, J.E., Clandinin, M.T., and Kearey-Volpe, C. (1985) Trans Fatty Acids in Human Milk Lipids: Influence of Maternal Diet and Weight Loss, Am. J. Clin. Nutr. 42, 49–56.PubMedGoogle Scholar
  129. 129.
    Koletzko, B., Mrotzek, M., Eng, B., and Brenner, H.J. (1988) Fatty Acid Composition of Mature Human Milk in Germany, Am. J. Clin. Nutr. 47, 954–959.PubMedGoogle Scholar
  130. 130.
    Dotson, K.D., Jerrel, J.P., Picciano, M.F., and Perkins, E.G. (1992) High-Performance Liquid Chromatography of Human Milk Triacylglycerols and Gas Chromatography of Component Fatty Acids, Lipids 27, 933–939.PubMedGoogle Scholar
  131. 131.
    Boatella, J., Rafecas, M., Codony, M., Gibert, A., Rivero, M., Tormo, R., Infante, D., and Sanchez-Valverde, F. (1993) Trans Fatty Acid Content of Human Milk in Spain, J. Pediatr. Gastroenterol. Nutr. 16, 432–434.PubMedGoogle Scholar
  132. 132.
    Wolff, R. (1995) Content and Distribution of trans-18∶1 Acids in Ruminant Milk and Meat Fats. Their Importance in European Diets and Their Effect on Human Milk, J. Am. Oil. Chem. Soc. 72, 259–272.Google Scholar
  133. 133.
    Jorgensen, M.H., Lessen, A., and Michaelsen K.F. (1995) Fatty Acid Composition in Danish Infant Formula Compared to Human Milk, Scan. J. Nutr. 39, 50–54.Google Scholar
  134. 134.
    Teter, B.B., Sampugna, J., and Keeney, M. (1990) Milk Fat Depression in C57BJ/6J Mice Consuming Partially Hydrogenated Fat, J. Nutr. 120, 818–824.PubMedGoogle Scholar
  135. 135.
    Wonsil, B.J., Herbein, H., and Watkins, B.J. (1994) Dietary and Ruminally Derived trans-18∶1 Fatty Acids Alter Bovine Milk Lipids, J. Nutr. 124, 556–565.PubMedGoogle Scholar
  136. 136.
    Gaynor, P.J., Erdman, R.A., Teter, B.B., Sampugna, J., Capuco, A.V., Waldo, D.R., and Hamosh, M. (1994) Milk Fat Yield and Composition During Abomasal Infusion of Cis or Trans Octadecenoates in Holstein Cows, J. Dairy Sci. 77, 157–165.PubMedGoogle Scholar
  137. 137.
    Khosla, P., and Hayes, K.C. (1996) Dietary Trans-Monounsaturated Fatty Acids Negatively Impact Plasma Lipids in Humans: Critical Review of the Evidence, J. Am. Coll. Nutr. 15, 325–339.PubMedGoogle Scholar
  138. 138.
    AIN/ASCN Task Force on Trans Fatty Acids (1996) Position Paper on Trans Fatty Acids, Am. J. Clin. Nutr. 63, 663–670.Google Scholar
  139. 139.
    Ascherio, A., and Willett, W.C. (1997) Health Effects of trans Fatty Acids, Am. J. Clin. Nutr. 66, 1006S-1010S.PubMedGoogle Scholar
  140. 140.
    Shapiro, S. (1997) Do trans Fatty Acids Increase the Risk of Coronary Artery Disease? A Critique of the Epidemiologic Evidence, Am. J. Clin. Nutr. 66, 1011S-1017S.PubMedGoogle Scholar
  141. 141.
    Koletzko, B. (1995) Trans Fatty Acids of Long-Chain Polyunsaturates and Growth in Man, Acta Paediatr. 81, 302–306.Google Scholar
  142. 142.
    Decsi, T., and Koletzko, B. (1995) Do trans Fatty Acids Impair Linoleic Acid Metabolism in Children? Ann. Nutr. Metab. 39, 36–41.PubMedCrossRefGoogle Scholar
  143. 143.
    Koletzko, B. (1995) Potential Adverse Effects of Trans Fatty Acids in Infants and Children, Eur. J. Med. Res. 1, 123–125.PubMedGoogle Scholar
  144. 144.
    Holman, R.T., Caster, W.O., and Wiese, H.G. (1964) The Essential Fatty Acid Requirement of Infants and Assessment of Their Dietary Intake of Linoleate by Serum Fatty Acids Analysis, Am. J. Clin. Nutr. 14, 70–75.PubMedGoogle Scholar
  145. 145.
    Holman, R.T., Johnson, S.B., and Hatch, T.F. (1982) A Case of Human Linocenic Acid Deficiency Involving Neurological Abnormalities, Am. J. Clin. Nutr. 35, 617–623.PubMedGoogle Scholar
  146. 146.
    Innis, S.M. (1991) Essential Fatty Acids in Growth and Development, Prog. Lipid Res. 30, 39–103.PubMedCrossRefGoogle Scholar
  147. 147.
    Sprecher, H., Luthria, D.L., Mohammed, B.S., and Baykouskera, S.P. (1995) Re-evaluation of the Rathways for the Biosynthesis of Polyunsaturated Fatty Acids, J. Lipid Res. 36, 2471–2477.PubMedGoogle Scholar
  148. 148.
    Greiner, R.C.S., Zhang, Q., Goodman, K.I., Giusanni D.A., Nathanielsz, P.M., and Brenna, T.W. (1996) Linoleate, Linolenate, and Docosahexaenoate Recycling into Saturated and Monounsaturated Acids Is a Major Pathway in Pregnant or Lactating Adults and Fetal or Infant Rhesus Monkeys, J. Lipid Res. 37, 2675–2686.Google Scholar
  149. 149.
    Inaull, W., Hirsch, J., James, T., and Ahren, E.H., Jr. (1959) The Fatty Acids of Human Milk. I. Alterations Produced by Manipulation of Caloric Balance and Exchange of Dietary Fats, J. Clin. Invest. 38, 443–450.Google Scholar
  150. 150.
    Jensen, R.G., Hagerty, M.M., and McMahon, K.E. (1978) Lipids of Human Milk and Infant Formulas: A Review, Am. J. Clin. Nutr. 31, 990–1016.PubMedGoogle Scholar
  151. 151.
    Sheaff, R.C., Su, H.-M., Keswick, L.A., and Brenna, J.T. (1995) Conversion of Linolenate to Docosahexaenoate Is Not Depressed by High Dietary Levels of Linoleate in Young Rats: Tracer Evidence Using High Precision Mass Spectrometry, J. Lipid Res. 36, 998–1008.PubMedGoogle Scholar
  152. 152.
    Lands, W.E.M. (1997) The Two Faces of Essential Fatty Acids, INFORM 8, 1141–1147.Google Scholar
  153. 153.
    European Society of Paediatric Gastroenterology and Nutrition (ESPGAN) (1991) Committee on Nutrition: Comment on the Content and Composition of Lipids in Infant Formulas, Acta Paediatr. Scand, 80, 887–896.Google Scholar
  154. 154.
    Sauerwald, T.U., Hachey, D.L., Jensen, C.L., Chen, H., Anderson, R.E., and Heird, W.C. (1996) Effect of Dietary Linolenic Acid Intake on Incorporation of Docosahexaenoic and Arachidonic Acids into Plasma Phospholipids of Term Infants, Lipids 31, S-131–S-135.Google Scholar
  155. 155.
    Carnielli, V.P., Wattimena, J.J., Luijendijk, I.H.T., Boerlage, A., Desenhart, H.J., and Sauer, P.J.J. (1996) The Very Low Birth Weight Premature Infant Is Capable of Synthesizing Arachidonic and Docosahexaenoic Acids from Linoleic and Linolenic Acids, Pediatr. Res. 10, 169–174.Google Scholar
  156. 156.
    Demmelmair, H., van Schenek, U., Sauerwald, T., and Koletzko, B. (1995) Estimation of Arachidonic Acid Synthesis in Full Term Neonates Using Natural Variation of 13C Content, J. Pediatr. Gastroenterol. Nutr. 21, 31–36.PubMedGoogle Scholar
  157. 157.
    Poisson, J.-P., Dupuy, R.-P., Sarda, P., Descomps, B., Rieu, D., Varce, M., and Crastos de Paulet, A. (1993) Evidence That Liver Microsomes of Human Neonates Desaturate Essential Fatty Acids, Biochim. Biophys. Acta 1167, 109–113.PubMedGoogle Scholar
  158. 158.
    Gibson, R.A., and Makrides, M., Long Chain Polyunsaturated Fatty Acids in Breastmilk: Are They Essential? in Bioactive Substances in Human Milk (Newburg, D., ed.), Plenum, New York, in press.Google Scholar
  159. 159.
    Nottleton, J.A. (1995). Omega-3 Fatty Acids and Health, Chapman & Hall, New York.Google Scholar
  160. 160.
    Carlson, S.E., and Werkman, S.H. (1996) A Randomized Trial of Visual Attention of Preterm Infants Fed Docosahexaenoic Acid Until Two Months, Lipids 31, 85–90.PubMedCrossRefGoogle Scholar
  161. 161.
    Uauy, R., and de Andraca, I. (1995) Human Milk and Breast Feeding for Optimal Mental Development, J. Nutr. 125, 2278S-2280S.PubMedGoogle Scholar
  162. 162.
    Crawford, M.A., Sinclair, A.J., Msuya, P.M., and Munhambo, A. (1973), Structural Lipids and Their Polyenoic Constituents in Human Milk, in Dietary Lipids and Postnatal Development, (Galli, C., Jacini, G., and Pecile, A., eds.) Raven Press, New York, pp. 41–56.Google Scholar
  163. 163.
    Crawford, M.A., Doyle, W., Dsury, P., Lennon, A., Costeloe, K., and Leighfield, M. (1989) n-6 and n-3 Fatty Acids During Early Human Development, J. Intern. Med. 225 (suppl.), 159–169.Google Scholar
  164. 164.
    Crawford, M. (1993) The Role of Essential Fatty Acids in Neural Development Implications for Perinatal Development, Am. J. Clin. Nutr. 57, 703S-710S.PubMedGoogle Scholar
  165. 165.
    Crawford, M.A., Costeloe, A., Ghebremeskel, K., Phylactos, A., and Stacey, F. (1997) Are Deficits of Arachidonic and Docosahexaenoic Acids Responsible for the Neutral and Vascular Complications of Preterm Babies? Am. J. Clin. Nutr. 66, 1032S-1041S.PubMedGoogle Scholar
  166. 166.
    Neuringer, M., Connor, W.E., VanPetten, C., and Barstad, C. (1984) Dietary Omega-3 Fatty Acid Deficiency and Visual Loss in Infant Rhesus Monkeys, J. Clin. Invest 73, 272–276.PubMedCrossRefGoogle Scholar
  167. 167.
    Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986) Biochemical and Functional Effects of Prenatal and Postuatal Omega-3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys, Proc. Natl. Acad. Sci. USA 83 4021–4025.PubMedCrossRefGoogle Scholar
  168. 168.
    Innis, S.M., Akrabawi, S.S., Diersen-Schade, D.A., Dobson, M.V., and Guy, D.G. (1997) Visual Acuity and Blood Lipids in Term Infants Fed Human Milk or Formulae, Lipids 32, 63–72.PubMedCrossRefGoogle Scholar
  169. 169.
    Carlson, S.E., Werkman, S.H., Peeples, J.M., Cook, R.J., and Tolley, E.A. (1993) Arachidonic Acid Status Correlates with First Year Growth in Pretern Infants, Proc. Natl. Acad. sci. USA 90, 1073–1077.PubMedCrossRefGoogle Scholar
  170. 170.
    Uatty, R., Hoffman, D.R., Birch, E.E., Birch, G.D., Jameson, D.M., and Tyson, J. (1994) Safety and Efficacy of Omega-3 Fatty Acids in the Nutrition of Very Low Birth Weight Infants: Soy Oil and Marine Oil Supplementation of Formula, J. Pediatr. 124, 612–620.CrossRefGoogle Scholar
  171. 171.
    Johnson, J.A., Blackburn, M.L., Bull, A.W., Welsch, C.W., and Watson, J.T. (1997) Separation and Quantition of Linoleic Acid Oxidation Products in Mammary Gland Tissue from Mice Fed Low- and High-Fat Diets, Lipids 32, 369–375.PubMedGoogle Scholar
  172. 172.
    Hamosh, M., and Salem, N., Jr. (1998) Long-chain Polyunsaturated Fatty Acids, Biol. Neonate 74, 106–120.PubMedCrossRefGoogle Scholar
  173. 173.
    Bendich, A., and Brock, P.E. (1997) Rationale for the Introduction of Long Chain Polyunsaturated Fatty Acid and for Concomitant Increase in the Level of Vitamin E in Infant Formulas, Int. J. Vit. Nutr. Res. 67, 213–231.Google Scholar
  174. 174.
    Parodi, D.W. (1994) Conjugated Linoleic Acid: An Anticarcinogenic Fatty Acid Present in Milk Fat, Aust. J. Dairy Technol. 49, 93–97.Google Scholar
  175. 175.
    Parodi, P.W. (1997) Cows’ Milk Fat Components as Potential Anticarcinogenic Agents, J. Nutr 127, 1055–1060.PubMedGoogle Scholar
  176. 176.
    Belury, M.A. (1995) Conjugated Dienoic Linoleate: A Polyunsaturated Fatty Acid with Unique Chemoprotective Properties, Nutr. Rev. 53, 83–89.PubMedCrossRefGoogle Scholar
  177. 177.
    Chardigny, J.-M., Sebedio, J.-L., and Berdeaux, O. (1996) Trans Polyunsaturated Fatty Acids: Occurrence and Nutritional Implications, Adv. Appl. Lipid Res. 2, 1–33.Google Scholar
  178. 178.
    McGuire, M.A., McGuire, M.K., McGuire, M.S., and Grinnari, J.M. (1997), Bovinic Acid: The Natural CLA, Proc. Cornell Nutr. Conf., pp. 216–226.Google Scholar
  179. 179.
    Parodi, P.W. (1997) Milk Fat Conjugated Linoleic Acid: Can It Help Prevent Breast Cancer? Proc. Nutr. Soc. New Zealand 21, 137–149.Google Scholar
  180. 180.
    Pariza, P.W. (1997) Conjugated Linoleic Acid, A Newly Recognized Nutrient, Chem. Ind. (London. 12), 464–466.Google Scholar
  181. 181.
    Chin, S.F., Liu, W., Storkson, J.M., Ha, Y.L., and Pariza, M.W. (1992) Dietary Sources of Conjugated Dienoic Isomers of Linoleic Acid, a Newly Recognized Class of Anticarcinogens, J. Food Comp. Anal. 5, 185–197.CrossRefGoogle Scholar
  182. 182.
    Kramer, J.K.G., Parodi, P.W., Mossoba, M.M., Yurawecz, M.P., and Adlof, R.A. (1998) Rumenic Acid. A Proposed Common Name for the Major Conjugated Linoleic Acid (CLA) Isomer Found in Natural Products, Lipids 33, 185.Google Scholar
  183. 183.
    Riel, R.R. (1963) Physico-Chemical Characteristics of Canadian Milk Fat. Unsaturated Fatty Acids, J. Dairy Sci. 616, 102–106.CrossRefGoogle Scholar
  184. 184.
    Parodi, P.W. (1977) Gonjugated Octadecadienoic Acids in Milk Fat, J. Dairy Sci. 60, 1550–1553.Google Scholar
  185. 185.
    Kepler, C.R., Hirons, H.P., McNeil, J.J., and Tove, S.B. (1966) Intermediates and Products of the Biohydrogenation of Linoleic Acid by Butyrivibrio fibrisolvens J. Biol. Chem. 241, 1350–1354.PubMedGoogle Scholar
  186. 186.
    Ha, Y.L., Grimm, N.K., and Pariza, M.W. (1987) Anticarcinogens from Fried Ground Beef: Heat-Altered Derivatives of Linoleic Acid, Carcinogenesis 8, 1881–1887.PubMedGoogle Scholar
  187. 187.
    Liew, C., Schuut, H.A.J., and Dashwood, R.H. (1995) Protection of Conjugated Linoleic Acids Against 2-Amino-3-methylimidazo [4,5f] Quinoline-Induced Colon Carcinogenesis in the F344 Rat: A Study of Inhibitory Mechanisms, Carcinogenesis 16, 3037–3043.PubMedGoogle Scholar
  188. 188.
    Ip, C., Singh, M., Thompson, H.J., and Scimeca, J.A. (1994) Conjugated Linoleic Acid Suppresses Mammary Carcinogenesis and Proliferative Activity of the Mammary Gland in the Rat, Cancer Res. 54, 1212–1215.PubMedGoogle Scholar
  189. 189.
    Schultz, T.D., Chow, B.P., and Seaman, W.R. (1992) Differential Stimulating and Inhibitory Responses of Human MLF-7 Breast Cancer Cells to Linoleic Acid and Conjugated Linoleic Acid in Culture, Anticancer Res. 12, 2143–2146.Google Scholar
  190. 190.
    Miller, C.C., Park, Y.L., Pariza, M.W., and Cook, M.E. (1994) Feeding Conjugated Linoleic Acid to Animals Partially Overcomes Catabolic Responses Due to Endotoxin Injection, Biochem. Biophys Res. Comm. 198, 1107–1112.PubMedCrossRefGoogle Scholar
  191. 191.
    Chin S.F., Storkson, J.M., Albright, K.J., Cook, M.E., and Pariza, M.W. (1994) Conjugated Linoleic Acid is a Growth Factor for Rats as Shown by Enhanced Weight Gain and Improved Food Efficiency, J. Nutr. 124, 2344–2349.PubMedGoogle Scholar
  192. 192.
    Cook, M.E., Miller, C.C., Park, Y., and Pariza, M.W. (1993) Immune Modulation by Altered Nutrient Metabolism: Nutritional Control of Immune-Induced Growth Depression, Poultry. Sci. 72, 1301–1305.Google Scholar
  193. 193.
    Lee, K.S.Z., Kritchevsky, D., and Pariza, M.W. (1994) Conjugated Linoleic Acid and Atherosclerosis in Rabbits Atherosclerosis 108, 19–25.PubMedCrossRefGoogle Scholar
  194. 194.
    Nicolosi, R.J., Rogers, E.J., Kritchevsky, D., Scimeca, J.A., and Huth, A.J. (1997) Dietary Conjugated Linoleic Acid Reduces Plasma Lipoproteins and Early Atherosclerosis in Hypercholesterolemic Hamsters, Artery 22, 266–277.PubMedGoogle Scholar
  195. 195.
    Ha, Y.L., Storkson, J., and Pariza, M.W. (1990) Inhibition of Benzo (α) Pyrene-Induced Mouse Forestomach Neoplasia by Conjugated Dienoic Derivatives of Linoleic Acid, Cancer Res. 50, 1097–2011.PubMedGoogle Scholar
  196. 196.
    Van der Bers, J.J.M., Cook, N.L.E., and Tribble, D.L. (1995) Reinvestigation of the Antioxidant Properties of Conjugated Linoleic Acid, Lipids 30, 599–605.Google Scholar
  197. 197.
    Li, Y., Allen, K.D.G., and Watkins, B.A. (1997) Dietary Conjugated Linoleic Acid Reduced ex Vivo Bone PGE2 Production in Rats, Proc. Expt. Biol. 97, A165, 962.Google Scholar
  198. 198.
    Belury, M.A., and Kempa-Steczko, A. (1997) Conjugated Linoleic Acid Modulates Hepatic Lipid Composition in Mice, Lipids 32, 199–204.PubMedCrossRefGoogle Scholar
  199. 199.
    Park, Y., Albright, K.D., Liu, Z.W., Storkson, J.M., Cook, M.E., and Pariza, P.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.PubMedCrossRefGoogle Scholar
  200. 200.
    Lin, H., Boylston, T.D., Chang, M.J., Luedecke, L.O., and Shultz, T.D. (1995) Surveys of the Conjugated Linoleic Acid Contents of Dairy Products, J. Dairy Sci. 78, 2358–2365.PubMedCrossRefGoogle Scholar
  201. 201.
    Precht, D., and Molkentin, J. (1997) Trans-Geometrical and Positional Isomers of Linoleic Acid Including Conjugated Linoleic Acid (CLA) in German Milk and Vegetable Fats, Fett/Lipid 99, 319–326.CrossRefGoogle Scholar
  202. 202.
    Fogerty, A.C., Ford, G.L., and Svoronos, D. (1988) Octadeca-9,11-dienoic Acid in Foodstuffs and in the Lipids of Human Blood and Breast Milk, Nutr. Rep. Int. 38, 937–944.Google Scholar
  203. 203.
    McGuire, M.K., Park, Y., Behre, R.S., Harrison, L.Y., Shultz, T.D., and McGuire, M.A. (1997) Conjugated Linoleic Acid Concentrations of Human Milk and Formulas, Nutr. Res. 17, 1277–1283.CrossRefGoogle Scholar
  204. 204.
    Jensen, R.G., Lammi-Keefe, C.J., Hill, D.W., Kind, A.J., and Henderson, R.A. (1998) The Anticarcinogenic Conjugated Fatty Acid-9c, 11t-18∶2 in Human Milk; Confirmation of Its Presence, J. Hum. Lact. 14, 23–27.PubMedGoogle Scholar
  205. 205.
    Huang, Y.-C., Luedecke, L.O., and Shultz, T.D. (1994) Effect of Cheddar Cheese Consumption on Plasma Conjugated Linoleic Acid Concentrations in Men, Nutr. Res. 3, 373–386.CrossRefGoogle Scholar
  206. 206.
    Park, Y.S., Behne, R.A., McGuire, M.A., Shultz, T.D., and McGuire, M.K. (1997) Dietary Conjugated Linoleic Acid (CLA) and CLA in Human Milk, FASEB J. 11, A239.Google Scholar
  207. 207.
    Ip, C. (1997) Review of the Effects of trans Fatty Acids, Oleic Acid, n-3 Polyunsaturated Fatty Acids, and Conjugated Linoleic Acid on Mammary Carcinogenesis in Animals, Am. J. Clin. Nutr. 66, 1513s-1522s.Google Scholar
  208. 208.
    Christie, W.W., Dobson, G., and Gunstone, F.D. (1997) Isomers in Commerical Samples of Conjugated Linoleic Acid, Lipids 32, 1231.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 1999

Authors and Affiliations

  1. 1.Department of Nutritional SciencesUniversity of ConnecticutStorrs

Personalised recommendations