Lipids

, Volume 33, Issue 6, pp 639–642

Callyspongynes A and B: New polyacetylenic lipids from a southern australian marine sponge, Callyspongia sp

Communication

Abstract

A Callyspongia sp. collected by SCUBA off Barwon Heads, Australia, has afforded two new polyacetylenic lipids, callyspongynes A and B, the structures of which were assigned by spectroscopic analysis and chemical derivatization.

Abbreviations

EI

electron impact ionization

EIMS

electron impact mass spectrometry

ESI

electrospray ionization

HPLC

high-performance liquid chromatography

IR

infrared

MS

mass spectrometry

MTPA

α-methoxy-α-(trifluoromethyl)phenylacetic acid

NMR

nuclear magnetic resonance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cimino, G., De Giulio, A., De Rosa, S., and Di Marzo, V. (1989) High Molecular Weight Polyacetylenes from the Petrosia ficiformis: Further Structural Analysis and Biological Activity, Tetrahedron 30, 3563–3566.CrossRefGoogle Scholar
  2. 2.
    Masamitsu, O., Saori, A., Tatssukawa, A., Hiyoshizo, K., Fukuyama, Y., and Shibata, K. (1994) Bioactive Polyacetylenes from the Marine Sponge Petrosia sp., Chem. Lett., 89–92.Google Scholar
  3. 3.
    Cimino, G., De Giulio, A., De Rosa, S., and Di Mario, V. (1990) Minor Bio-Active Polyacetylenes from Petrosia ficiformis J. Nat. Prod. 53, 345–353.CrossRefGoogle Scholar
  4. 4.
    Guo, Y., Gavanin, M., Trivellone, E., and Cimino, G. (1994) Absolute Stereochemistry of Petroformynes, High Molecular Weight Polyacetylenes from the Marine Sponge Petrosia ficiformis, Tetrahedron 50, 13261–13268.CrossRefGoogle Scholar
  5. 5.
    Guo, Y., Gavanin, M., Trivellone, E., and Cimino, G. (1994) Further Structural Studies on the Petroformynes, J. Nat. Prod. 58, 712–722.CrossRefGoogle Scholar
  6. 6.
    Fusetani, N., Shiragaki, T., Matsunaga, S., and Hashimoto, K. (1987) Bioactive Marine Metabolites XX1. Petrosynol and Petrosynone, Antimicrobial C30 Polyacetylenes from the Marine Sponge Petrosia sp. Determination of the Absolute Configuration, Tetrahedron Lett. 28, 4313–4314.CrossRefGoogle Scholar
  7. 7.
    Li, H.Y., Matsunaga, S., and Fusetani, N. (1994) Corticatic Acids A-C, Antifungal Acetylenic Acids from the Marine Sponge, Petrosia corticata, J. Nat. Prod. 54, 1464–1467.CrossRefGoogle Scholar
  8. 8.
    Castiello, D., Cimmino, G., De Rosa, S., Stefano, S., and Sodano, G. (1980) High Molecular Weight Polyacetylenes from the Nudibrach Peltodoris atromaculata and the Sponge Petrosia ficiformis, Tetrahedron Lett. 21, 5047–5050.CrossRefGoogle Scholar
  9. 9.
    Aeillo, A., Fattorusso, E., Menna, M. (1992) Further Bioactive Acetylenic Compounds from the Caribbean Sponge Criblochalina vasculum, J. Nat. Prod. 9, 1275–1280.CrossRefGoogle Scholar
  10. 10.
    Wright, A.E., McConnell, O.J., Kohmoto, S., Lui, M.S., Thompson, W., and Snader, K.M. (1987) Duryne, A New Cytotoxic Agent from the Marine Sponge Cribrochalina dura, Tetrahedron Lett. 28, 1377–1380.CrossRefGoogle Scholar
  11. 11.
    Hallock, Y.F., Cardellina, II, J.H., Balaschak, M.S., Alexander, M.R., Prather, T.R., Shoemaker, R.H., and Boyd, M.R. (1995) Antitumour Activity and Stereochemistry of Acetylenic Alcohols from the Sponge Cribrochalina vasc dum, J. Nat. Prod. 58, 1801–1807.PubMedCrossRefGoogle Scholar
  12. 12.
    Gunasekera, S.P., and Faircloth, G.T. (1990) New Acetylenic Alcohols from the Sponge Cribrochalina vasculum, J. Org. Chem. 55, 6223–6225.CrossRefGoogle Scholar
  13. 13.
    Kato, Y., Matsunaga, S., Hashimoto, K., and Fusetani, N. (1983) Bioactive Marine Metabolites III. A Novel Polyacetylene Alcohol, Inhibitor of Cell Division in Feritilized Sea Urchin Eggs, from the Marine Sponge Tetrosia sp., Tetrahedron Lett. 24, 2271–2274.CrossRefGoogle Scholar
  14. 14.
    Li, Y., Ishibashi, M., Sasaki, T., and Kobayashi, J. (1995) New Bromine-Containing Unsaturated Fatty Acid Derivatives from the Okinawan Marine Sponge Xestospongia sp., J. Chem. Res. 4, 901–923.Google Scholar
  15. 15.
    Brantley, S.E., Molinski, T.F., Preston, C.M., and DeLong, E.F. (1995) Brominated Acetylenic Fatty Acids from Xestospongia sp. A marine Sponge-Bacteria Association, Tetrahedron 51, 7667–7672.CrossRefGoogle Scholar
  16. 16.
    Haruhiko, T., and Fumio, Y. (1984) Siphonodiol. A New Polyacetylenic Metabolite from the Sponge Siphonochalina truncate, Chem. Lett. 779–780.Google Scholar
  17. 17.
    Ortega, M.J., Zubia, E., Carballo, J.L., and Salva, J. (1986) Fulvinol, a Long-Chain Diacetylenic Metabolite from the Marine Sponge Reniera fulva, J. Nat. Prod. 59, 1069–1071.CrossRefGoogle Scholar
  18. 18.
    Williams, D.H., and Faulkner, D.J. (1996) Three New Acetylenes from the Palauan Sponge Haliconia sp., J. Nat. Prod. 59, 1099–1101.CrossRefGoogle Scholar
  19. 19.
    Miao, S., and Andersen, R.J. (1996) A New Diacetylenic Hydrocarbon from the Sponge Callyspongia flammea, Callyiyne, J. Nat. Prod. 54, 1433–1434.CrossRefGoogle Scholar
  20. 20.
    Urban, S., and Capon, R.J. (1997) A New Lipid from an Australian Marine Sponge, Callyspongia sp., Lipids 32, 675–677.PubMedGoogle Scholar
  21. 21.
    Dale, J., and Mosher, S. (1973) Nuclear Magnetic Resonance Enantiomer Reagents, Configurational Correlations via Nuclear Magnetic Chemical Shifts of Diastereometric Mandelate, O-Methylmandelate, and α-Methoxy-α-trifluoromethylphenylacetate (MTPA) Esters, J. Am. Chem. Soc. 95, 512–516.CrossRefGoogle Scholar

Copyright information

© AOCS Press 1998

Authors and Affiliations

  1. 1.School of ChemistryThe University of MelbourneParkvilleAustralia

Personalised recommendations