Lipids

, Volume 52, Issue 8, pp 711–727 | Cite as

Differential Interaction of Myoglobin with Select Fatty Acids of Carbon Chain Lengths C8 to C16

Original Article
  • 150 Downloads

Abstract

Previous studies have shown that palmitic acid (PAM) and oleic acid (OLE) can bind myoglobin (Mb). How fatty acids (FA) with different carbon chain lengths and sulfate substitution interact with Mb remains uncertain. Indeed, C8:0 and C10:0 fatty acids do not perturb the intensities of the 1H-NMR MbCN signal intensity at FA:Mb ratios below 2:1. Starting with C12:0, C12:0-C16:0, FA induce a noticeable spectral change. C12:0 and C14:0 FA affect both the 5- and 8-heme methyl signals, whereas the C16:0 FA perturbs only the 8-heme methyl signal. All C12:0–C16:0 saturated FA induce upfield shifts in the –CH2 peak of different FA in the presence of Mb. Increasing the apparent solubility with a sulfate group substitution enhances the FA interaction of lauric sulfate (LAU 1-SO4) but not palmitate sulfate acid (PAM 1-SO4). The detergent (DET) property of FA has no significant contribution. Common positive, neutral, and negative DET at DET:Mb ratio of 1:1 induce no perturbation of the MbCN spectra. The experiment observations establish a basis to investigate the molecular mechanism underlying the FA interaction with Mb.

Keywords

Lipid Lipid–protein interaction Fatty acid NMR Metabolism Bioenergetics Hydrophobicity Detergent 

Abbreviations

FA

Fatty acid(s)

OCT

Octanoic acid, C8:0

DEC

Decanoic acid, C10:0

LAU

Lauric acid, C12:0

MYR

Myristic acid, C14:0

PAM

Palmitic acid, C16:0

LAU 1-SO4

Lauryl sulfate

PAM 1-SO4

Palmityl sulfate

FABP

Fatty acid binding protein

Mb

Myoglobin

MbCN

Cyanometmyoglobin

Notes

Acknowledgements

We gratefully acknowledge funding support from NIH GM 58688 (TJ), the guidance of Dr. Ulrike Kreutzer, and scientific discussion with Clayton Germolus and Jessica Gregory.

References

  1. 1.
    Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020CrossRefPubMedGoogle Scholar
  2. 2.
    Gros G, Wittenberg B, Jue T (2010) Myoglobin’s old and new clothes: from molecular structure to function in living cells. J Exp Biol 213:2713–2725CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chung Y, Mole PA, Sailasuta N, Tran TK, Hurd R, Jue T (2005) Control of respiration and bioenergetics during muscle contraction. Am J Physiol Cell Physiol 288:C730–C738CrossRefPubMedGoogle Scholar
  4. 4.
    Ponganis PJ, Kreutzer U, Sailasuta N, Knower T, Hurd R, Jue T (2002) Detection of myoglobin desaturation in Mirounga angustirostris during apnea. Am J Physiol Regul Integr Comp Physiol 282:R267–R272CrossRefPubMedGoogle Scholar
  5. 5.
    Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Annu Rev Physiol 51:857–878CrossRefPubMedGoogle Scholar
  6. 6.
    Chung Y, Jue T (1996) Cellular response to reperfused oxygen in the postischemic myocardium. Am J Physiol 271:H687–H695PubMedGoogle Scholar
  7. 7.
    Chung Y, Huang SJ, Glabe A, Jue T (2006) Implication of CO inactivation on myoglobin function. Am J Physiol Cell Physiol 290:C1616–C1624CrossRefPubMedGoogle Scholar
  8. 8.
    Glabe A, Chung Y, Xu D, Jue T (1998) Carbon monoxide inhibition of regulatory pathways in myocardium. Am J Physiol 274:H2143–H2151PubMedGoogle Scholar
  9. 9.
    Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS (1998) Mice without myoglobin. Nature 395:905–908CrossRefPubMedGoogle Scholar
  10. 10.
    Godecke A, Flogel U, Zanger K, Ding Z, Hirchenhain J, Decking UK, Schrader J (1999) Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci USA 96:10495–10500CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin PC, Kreutzer U, Jue T (2007) Myoglobin translational diffusion in myocardium and its implication on intracellular oxygen transport. J Physiol 578:595–603CrossRefPubMedGoogle Scholar
  12. 12.
    Lin PC, Kreutzer U, Jue T (2007) Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication on oxygen transport and cellular architecture. Biophy J 92:2608–2620CrossRefGoogle Scholar
  13. 13.
    Papadopoulos S, Endeward V, Revesz-Walker B, Jurgens KD, Gros G (2001) Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc Natl Acad Sci USA 98:5904–5909CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Papadopoulos S, Jurgens KD, Gros G (1995) Diffusion of myoglobin in skeletal muscle cells -dependence on fibre type, contraction and temperature. Pflugers Arch Eur J Physiol 430:519–525CrossRefGoogle Scholar
  15. 15.
    Flogel U, Merx MW, Godecke A, Decking UKM, Schrader J (2001) Myoglobin: a scavenger of bioactive NO. Proc Natl Acad Sci 98:735–740CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kreutzer U, Jue T (2004) The role of myoglobin as a scavenger of cellular NO in myocardium. Am J Physiol 286:H985–H991Google Scholar
  17. 17.
    Kreutzer U, Jue T (2006) Investigation of bioactive NO-scavenging role of myoglobin in myocardium. Eur J Physiol 452:36–42CrossRefGoogle Scholar
  18. 18.
    Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J (2007) Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 100:1749–1754CrossRefPubMedGoogle Scholar
  19. 19.
    Flogel U, Laussmann T, Godecke A, Abanador N, Schafers M, Fingas CD, Metzger S, Levkau B, Jacoby C, Schrader J (2005) Lack of myoglobin causes a switch in cardiac substrate selection. Circ Res 96:e68–e75CrossRefPubMedGoogle Scholar
  20. 20.
    Gloster J (1977) Studies on fatty-acid binding characteristics of myoglobin and Z-protein. J Mol Cell Cardiol 9:15CrossRefGoogle Scholar
  21. 21.
    Gloster J, Harris P (1977) Fatty-acid binding to cytoplasmic proteins of myocardium and red and white skeletal-muscle in rat—possible new role for myoglobin. Biochem Biophys Res Commun 74:506–513CrossRefPubMedGoogle Scholar
  22. 22.
    Gotz FM, Hertel M, Groschelstewart U (1994) Fatty-acid-binding of myoglobin depends on its oxygenation. Bio Chem Hoppe-Seyler 375:387–392CrossRefGoogle Scholar
  23. 23.
    Shih L, Chung Y, Sriram R, Jue T (2014) Palmitate interaction with physiological states of myoglobin. Biochim Biophys Acta 1840:656–666CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sriram R, Kreutzer U, Shih L, Jue T (2008) Interaction of fatty acid with myoglobin. FEBS Lett 582:3643–3649CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    La Mar GN, De Ropp JS (1993) NMR methodology for paramagnetic proteins. In: Berliner LJ, Reuben J (eds) NMR of paramagnetic molecules. Plenum, New YorkGoogle Scholar
  26. 26.
    La Mar GN, Horrocks WD Jr, Holm RH (1973) NMR of paramagnetic molecules. Academic Press, Inc., New YorkGoogle Scholar
  27. 27.
    La Mar GN, Shulman RG (1979) Model compounds as aids in interpreting NMR spectra of hemoproteins. Biological applications of magnetic resonance. Academic, New YorkGoogle Scholar
  28. 28.
    Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Tofani L, Feis A, Snoke RE, Berti D, Baglioni P, Smulevich G (2004) Spectroscopic and interfacial properties of myoglobin/surfactant complexes. Biophys J 87:1186–1195CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shih L, Chung Y, Sriram R, Jue T (2015) Interaction of myoglobin with oleic acid. Chem Phys Lipids 191:115–122CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jue T, Simond G, Wright TJ, Shih L, Chung Y, Sriram R, Kreutzer U, and Davis RW (2017) Effect of fatty acid interaction on myoglobin oxygen affinity and triglyceride metabolism. J Physiol Biochem. doi: 10.1007/s13105-017-0559-z
  32. 32.
    Tomita A, Kreutzer U, Adachi S, Koshihara SY, Jue T (2010) ‘It’s hollow’: the function of pores within myoglobin. J Exp Biol 213:2748–2754CrossRefPubMedGoogle Scholar
  33. 33.
    Case DA, Karplus M (1979) Dynamics of ligand binding to heme proteins. J Mol Biol 132:343–368CrossRefPubMedGoogle Scholar
  34. 34.
    Lecomte JT, La Mar GN (1985) 1H NMR study of labile proton exchange in the heme cavity as a probe for the potential ligand entry channel in myoglobin. Biochemistry 24:7388–7395CrossRefPubMedGoogle Scholar
  35. 35.
    Aki H, Yamamoto M (1992) Thermodynamic aspects of fatty acids binding to human serum albumin: a microcalorimetric investigation. Chem Pharm Bull (Tokyo) 40:1553–1558CrossRefGoogle Scholar
  36. 36.
    Ashbrook JD, Spector AA, Santos EC, Fletcher JE (1975) Long chain fatty acid binding to human plasma albumin. J Biol Chem 250:2333–2338PubMedGoogle Scholar
  37. 37.
    Vorum H, Brodersen R, Kraghhansen U, Pedersen AO (1992) Solubility of long-chain fatty-acids in phosphate buffer at pH-7.4. Biochem Biophys Acta 1126:135–142CrossRefPubMedGoogle Scholar
  38. 38.
    Vorum H, Brodersen R (1994) Adsorption and physical state of medium and long chain fatty acids in neutral aqueous buffer solution. Chem Phys Lipids 74:43–48CrossRefGoogle Scholar
  39. 39.
    Akhrem AA, Andreiuk GM, Gurinovich NA, Kisel MA, Kiselev PA (1987) Fatty-acid initiated auto-oxidation of hemoglobin. Biokhimiia 52:2015–2021PubMedGoogle Scholar
  40. 40.
    Nakamura Y, Nishida T (1971) Effect of hemoglobin concentration on the oxidation of linoleic acid. J Lipid Res 12:149–154PubMedGoogle Scholar
  41. 41.
    Bienfait HF, Jacobs JM, Slater EC (1975) Mitochondrial oxygen affinity as a function of redox and phosphate potentials. Biochim Biophys Acta 376:446–457CrossRefPubMedGoogle Scholar
  42. 42.
    Masuda K, Truscott K, Lin PC, Kreutzer U, Chung Y, Sriram R, Jue T (2008) Determination of myoglobin concentration in blood-perfused tissue. Eur J Appl Physiol 104:41–48CrossRefPubMedGoogle Scholar
  43. 43.
    Wang D, Kreutzer U, Chung Y, Jue T (1997) Myoglobin and hemoglobin rotational diffusion in the cell. Biophys J 73:2764–2770CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Richieri GV, Ogata RT, Kleinfeld AM (1994) Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269:23918–23930PubMedGoogle Scholar
  45. 45.
    Vork MM, Glatz JF, van der Vusse GJ (1993) On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. JtheorBiol 160:207–222Google Scholar
  46. 46.
    Thumser AE, Storch J (2007) Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Mol Cell Biochem 299:67–73CrossRefPubMedGoogle Scholar
  47. 47.
    Storch J, Bass NM (1990) Transfer of fluorescent fatty acids from liver and heart fatty acid-binding proteins to model membranes. J Biol Chem 265:7827–7831PubMedGoogle Scholar
  48. 48.
    Storch J, Thumser AE (2000) The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta 1486:28–44CrossRefPubMedGoogle Scholar
  49. 49.
    Luxon BA, Milliano MT (1997) Cytoplasmic codiffusion of fatty acids is not specific for fatty acid binding protein. Am J Physiol 273:C859–C867PubMedGoogle Scholar
  50. 50.
    Vork MM, Glatz JF, van der Vusse GJ (1997) Modelling intracellular fatty acid transport: possible mechanistic role of cytoplasmic fatty acid-binding protein. Prostaglandins Leukot Essent Fatty Acids 57:11–16CrossRefPubMedGoogle Scholar
  51. 51.
    Chintapalli SV, Jayanthi S, Mallipeddi PL, Gundampati R, Suresh Kumar TK, van Rossum DB, Anishkin A, Adams SH (2016) Novel molecular interactions of acylcarnitines and fatty acids with myoglobin. J Biol Chem 291:25133–25143CrossRefPubMedGoogle Scholar
  52. 52.
    Chintapalli SV, Bhardwaj G, Patel R, Shah N, Patterson RL, van Rossum DB, Anishkin A, Adams SH (2015) Molecular dynamic simulations reveal the structural determinants of fatty acid binding to oxy-myoglobin. PLoS One 10:e0128496CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jones MN (1992) Surfactant interaction with biomembranes and proteins. Chem Soc Rev 2:127–136CrossRefGoogle Scholar
  54. 54.
    La Mar GN (1979) Model compounds as aids in interpreting NMR spectra of hemoproteins. In: Shulman RG (ed) Biological applications of magnetic resonance. Academic, New YorkGoogle Scholar
  55. 55.
    La Mar GN, Budd DL, Smith KM, Langry KC (1980) Nuclear magnetic resonance of high-spin ferric hemoproteins. Assignment of proton resonances in met-aquo myoglobins using deuterium-labeled hemes. J Am Chem Soc 102:1822–1827CrossRefGoogle Scholar
  56. 56.
    La Mar GN, Davis NL, Parish DW, Smith KM (1983) Heme orientational disorder in reconstituted and native sperm whale myoglobin. J Mol Biol 168:887–896CrossRefPubMedGoogle Scholar
  57. 57.
    Busse SC, Jue T (1994) Two-dimensional NMR characterization of the deoxymyoglobin heme pocket. Biochemistry 33:10934–10943CrossRefPubMedGoogle Scholar
  58. 58.
    La Mar GN, Dalichow F, Zhao X, Dou Y, Ikeda-Saito M, Chiu ML, Sligar SG (1994) 1H NMR investigation of distal mutant deoxy myoglobins. Interpretation of proximal His contact shifts in terms of a localized distal water molecule. J Biol Chem 269:29629–29635PubMedGoogle Scholar
  59. 59.
    Otzen D (2011) Protein–surfactant interactions: a tale of many states. Biochim Biophys Acta 1814:562–591CrossRefPubMedGoogle Scholar
  60. 60.
    Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282CrossRefPubMedGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular MedicineUniversity of California DavisDavisUSA

Personalised recommendations