Lipids

, Volume 52, Issue 1, pp 11–26 | Cite as

Identification of Oxidized Phosphatidylinositols Present in OxLDL and Human Atherosclerotic Plaque

  • Devin Hasanally
  • Andrea Edel
  • Rakesh Chaudhary
  • Amir Ravandi
Original Article
  • 291 Downloads

Abstract

Oxidized low-density lipoprotein (OxLDL) plays an important role in initiation and progression of atherosclerosis. Proatherogenic effects of OxLDL have been attributed to bioactive phospholipids generated during LDL oxidation. It is unknown what effect oxidation has on the phosphatidylinositol (PtdIns) molecules in LDL, even though PtdIns is 6% of the total LDL phospholipid pool. We sought to identify and quantitate oxidized phosphatidylinositol (OxPtdIns) species in OxLDL and human atherosclerotic plaque. Bovine liver PtdIns was subjected to non-enzymatic and lipoxygenase-catalyzed oxidation. Reversed-phase liquid chromatography with negative ESI–MS identified and confirmed compounds by fragmentation pattern analysis from which an OxPtdIns library was generated. Twenty-three OxPtdIns molecules were identified in copper-oxidized human LDL at 0, 6, 12, 24, 30, and 48 h, and in human atherosclerotic plaque. In OxLDL, OxPtdIns species containing aldehydes and carboxylates comprised 17.3 ± 0.1 and 0.9 ± 0.2%, respectively, of total OxPtdIns in OxLDL at 48 h. Hydroperoxides and isoprostanes at 24 h (68.5 ± 0.2 and 22.8 ± 0.2%) were significantly greater than 12 h (P < 0.01) without additional changes thereafter. Hydroxides decreased with increased oxidation achieving a minimum at 24 h (5.2 ± 0.3%). Human atherosclerotic plaques contained OxPtdIns species including aldehydes, carboxylates, hydroxides, hydroperoxides and isoprostanes, comprising 18.6 ± 4.7, 1.5 ± 0.7, 16.5 ± 7.4, 33.3 ± 1.1 and 30.2 ± 3.3% of total OxPtdIns compounds. This is the first identification of OxPtdIns molecules in human OxLDL and atherosclerotic plaque. With these novel molecules identified we can now investigate their potential role in atherosclerosis.

Keywords

Oxidized phospholipids Lipoproteins OxLDL Mass spectrometry Phosphatidylinositol Atheroma Atherosclerosis 

Abbreviations

CM

2:1 Chloroform:methanol

BHT

Butylated hydroxytoluene

EDTA

Ethylenediaminetetraacetic acid

EPD

Embolic protection device

IL

Interleukin

I/R

Ischemia/reperfusion

KDdiA-PtdCho

1-Palmitoyl-2-(4-keto-dodec-3-ene-dioyl)-phosphatidylcholine

LGE2

Levuglandin E2

LOX-I

Lipoxygenase-I

Lp-PLA2

Lipoprotein-associated phospholipase A2

MRM

Multiple reaction monitoring

NP

Normal-phase

OxLDL

Oxidized low density lipoprotein

OxPtdCho

Oxidized phosphocholine

OxPtdIns

Oxidized phosphatidylinositol

PAF

Platelet-activating factor

PAPtdCho

1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

PCI

Percutaneous coronary intervention

PDHPtdCho

1-Palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

PEI

1-Palmitoyl-2-epoxyisoprostane

PGPtdCho

1-Palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine

PtdIns

Phosphatidylinositol

PtdIns-4-P

Phosphatidylinositol 4-phosphate

PtdIns-4,5-P2

Phosphatidylinositol 4,5-bisphosphate

PtdIns-3,4,5-P3

Phosphatidylinositol 3,4,5-trisphosphate

PtdIns 3K

Phosphoinositide 3-kinases

PKB

Protein kinase B

PLPtdCho

1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine

PONPtdCho

1-Palmitoyl-2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine

POVPtdCho

1-Palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphocholine

ROS

Reactive oxygen species

RP

Reversed-phase

SAPtdCho

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

SEC

1-Stearoyl-epoxycholine

SEI

1-Stearoyl-epoxyisoprostane

SLPtdCho

1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine

SVG

Saphenous vein graft

TIC

Total ion chromatogram

TNFα

Tumor necrosis factor alpha

Supplementary material

11745_2016_4217_MOESM1_ESM.xlsx (66 kb)
Supplementary material 1 (XLSX 65 kb)

References

  1. 1.
    Hartvigsen K, Chou M-Y, Hansen L, Shaw P, Tsimikas S, Binder C, Witztum J (2009) The role of innate immunity in atherogenesis. J Lipid Res 50 Suppl:S388–S393PubMedGoogle Scholar
  2. 2.
    Steinberg D, Witztum J (2010) Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol 30:2311–2316CrossRefPubMedGoogle Scholar
  3. 3.
    Levitan I, Volkov S, Subbaiah PV (2010) Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13:39–75CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stemmer U, Dunai Z, Koller D, Pürstinger G, Zenzmaier E, Deigner H, Aflaki E, Kratky D, Hermetter A (2012) Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis 11:110CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pégorier S, Stengel D, Durand H, Croset M, Ninio E (2006) Oxidized phospholipid: POVPC binds to platelet-activating-factor receptor on human macrophages: implications in atherosclerosis. Atherosclerosis 188:433–443CrossRefPubMedGoogle Scholar
  6. 6.
    Fruhwirth G, Moumtzi A, Loidl A, Ingolic E, Hermetter A (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761:1060–1069CrossRefPubMedGoogle Scholar
  7. 7.
    van Dijk R, Kolodgie F, Ravandi A, Leibundgut G, Hu P, Prasad A, Mahmud E, Dennis E, Curtiss L, Witztum J, Wasserman B, Otsuka F, Virmani R, Tsimikas S (2012) Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res 53:2773–2790CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Skipski VP, Barclay M, Barclay RK, Fetzer VA, Good JJ, Archibald FM (1967) Lipid composition of human serum lipoproteins. Biochem J 1967:340–352CrossRefGoogle Scholar
  9. 9.
    Fruman DA, Meyers RE, Cantley LC (1997) Phosphoinositide kinases. Annu Rev Biochem 67:481–507CrossRefGoogle Scholar
  10. 10.
    Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445PubMedGoogle Scholar
  11. 11.
    Kane LP, Weiss A (2003) The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 192:7–20CrossRefPubMedGoogle Scholar
  12. 12.
    Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ravandi A, Babaei S, Leung R, Monge J, Hoppe G, Hoff H, Kamido H, Kuksis A (2004) Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39:97–109PubMedGoogle Scholar
  14. 14.
    Thomas C, Morgan L, Maskrey B, Murphy R, Kühn H, Hazen S, Goodall A, Hamali H, Collins P, O’Donnell V (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285:6891–6903CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kamido H, Eguchi H, Ikeda H, Imaizumi T, Yamana K, Hartvigsen K, Ravandi A, Kuksis A (2002) Core aldehydes of alkyl glycerophosphocholines in atheroma induce platelet aggregation and inhibit endothelium-dependent arterial relaxation. J Lipid Res 43:158–166PubMedGoogle Scholar
  16. 16.
    Bochkov V, Oskolkova O, Birukov K, Levonen A-L, Binder C, Stöckl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nakanishi H, Iida Y, Shimizu T, Taguchi R (2009) Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 877:1366–1374CrossRefGoogle Scholar
  18. 18.
    Ibusuki D, Nakagawa K, Asai A, Oikawa S, Masuda Y, Suzuki T, Miyazawa T (2008) Preparation of pure lipid hydroperoxides. J Lipid Res 49:2668–2677CrossRefPubMedGoogle Scholar
  19. 19.
    Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  20. 20.
    Gruber F, Bicker W, Oskolkova O, Tschachler E, Bochkov V (2012) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 53:1232–1242CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ravandi A, Leibundgut G, Hung M-Y, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S (2014) Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 63:1961–1971CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    White CW, Hasanally D, Mundt P, Li Y, Xiang B, Klein J, Muller A, Ambrose E, Ravandi A, Arora RC, Lee TW, Hryshko LV, Large S, Tian G, Freed DH (2015) A whole blood-based perfusate provides superior preservation of myocardial function during ex vivo heart perfusion. J Heart Lung Transplant 34:113–121CrossRefPubMedGoogle Scholar
  23. 23.
    Zeglinski M, Premecz S, Lerner J, Wtorek P, daSilva M, Hasanally D, Chaudhary R, Sharma A, Thliveris J, Ravandi A, Singal PK, Jassal DS (2014) Congenital absence of nitric oxide synthase 3 potentiates cardiac dysfunction and reduces survival in doxorubicin- and trastuzumab-mediated cardiomyopathy. Can J Cardiol 30:359–367CrossRefPubMedGoogle Scholar
  24. 24.
    Breckenridge WC, Palmer FB (1982) Fatty acid composition of human plasma lipoprotein phosphatidylinositols. Biochim Biophys Acta 712:707–711CrossRefPubMedGoogle Scholar
  25. 25.
    Yin H, Cox BE, Liu W, Porter NA, Morrow JD, Milne GL (2009) Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray ion trap mass spectrometry. J Mass Spectrom 44:672–680CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ravandi A, Kuksis A, Shaikh N, Jackowski G (1997) Preparation of Schiff base adducts of phosphatidylcholine core aldehydes and aminophospholipids, amino acids, and myoglobin. Lipids 32:989–1001CrossRefPubMedGoogle Scholar
  27. 27.
    Bordun KA, Premecz S, daSilva M, Mandal S, Goyal V, Glavinovic T, Cheung M, Cheung D, White CW, Chaudhary R, Freed DH, Villarraga HR, Herrmann J, Kohli M, Ravandi A, Thliveris J, Pitz M, Singal PK, Mulvagh S, Jassal DS (2015) The utility of cardiac biomarkers and echocardiography for the early detection of bevacizumab- and sunitinib-mediated cardiotoxicity. Am J Physiol Heart Circ Physiol 309:H692–H701CrossRefPubMedGoogle Scholar
  28. 28.
    White C, Ali A, Hasanally D, Xiang B, Li Y, Mundt P, Lytwyn M, Colah S, Klein J, Ravandi A, Arora R, Lee T, Hryshko L, Large S, Tian G, Freed D (2013) A cardioprotective preservation strategy employing ex vivo heart perfusion facilitates successful transplant of donor hearts after cardiocirculatory death. J Heart Lung Transplant 32:734–743CrossRefPubMedGoogle Scholar
  29. 29.
    Kimura T, Shibata Y, Yamauchi K, Igarashi A, Inoue S, Abe S, Fujita K, Uosaki Y, Kubota I (2012) Oxidized phospholipid, 1-palmitoyl-2-(9′-oxo-nonanoyl)-glycerophosphocholine (PON-GPC), produced in the lung due to cigarette smoking, impairs immune function in macrophages. Lung 190:169–182CrossRefPubMedGoogle Scholar
  30. 30.
    Chen R, Yang L, McIntyre T (2007) Cytotoxic phospholipid oxidation products. Cell death from mitochondrial damage and the intrinsic caspase cascade. J Biol Chem 282:24842–24850CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Springstead J, Gugiu B, Lee S, Cha S, Watson A, Berliner J (2012) Evidence for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function. J Lipid Res 53:1304–1315CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B (2000) Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Lett 471:34–38CrossRefPubMedGoogle Scholar
  33. 33.
    Fruhwirth G, Loidl A, Hermetter A (2007) Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta 1772:718–736CrossRefPubMedGoogle Scholar
  34. 34.
    Birukova A, Starosta V, Tian X, Higginbotham K, Koroniak L, Berliner J, Birukov K (2013) Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res 161:495–504CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P (2001) Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42:663–672PubMedGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Devin Hasanally
    • 1
  • Andrea Edel
    • 1
  • Rakesh Chaudhary
    • 1
  • Amir Ravandi
    • 1
    • 2
  1. 1.Institute of Cardiovascular Sciences, St. Boniface Hospital, Albrechtsen Research CentreUniversity of ManitobaWinnipegCanada
  2. 2.Section of Cardiology, Department of Internal Medicine, Bergen Cardiac Care Centre, St. Boniface General HospitalUniversity of ManitobaWinnipegCanada

Personalised recommendations