Advertisement

Lipids

, Volume 51, Issue 1, pp 25–38 | Cite as

Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion

  • Kayode A. Balogun
  • Sukhinder K. CheemaEmail author
Original Article

Abstract

Obesity is characterized by an increase in fat mass primarily as a result of adipocyte hypertrophy. Diets enriched in omega (n)-3 polyunsaturated fatty acids (PUFA) are suggested to reduce obesity, however, the mechanisms are not well understood. We investigated the effect of n-3 PUFA on adipocyte hypertrophy and the key genes involved in adipocyte hypertrophy. Female C57BL/6 mice were fed semi-purified diets (20 % w/w fat) containing high n-3 PUFA before mating, during pregnancy, and until weaning. Male and female offspring were continued on high n-3 PUFA (10 % w/w), medium n-3 PUFA (4 % w/w), or low n-3 PUFA (2 % w/w) diet for 16 weeks postweaning. Adipocyte area was quantified using microscopy, and gonadal mRNA expression of acyl CoA:diacylglycerol acyltransferase-2 (DGAT-2), fatty acid binding protein-4 (FABP-4) and leptin were measured. The high n-3 PUFA group showed higher levels of total n-3 PUFA in gonadal TAG compared to the medium and low n-3 PUFA groups (P < 0.001). The high n-3 PUFA male group had a lower adipocyte area compared to the medium and low n-3 PUFA group (P < 0.001); however, no difference was observed in females. The high n-3 PUFA male group showed lower mRNA expression of FABP-4, DGAT-2 and leptin compared to the low n-3 PUFA group, with no difference in females. Plasma lipid levels were lower in the high n-3 PUFA group compared to the other groups. Our findings show for the first time that n-3 PUFA prevents adipocyte hypertrophy by downregulating FABP-4, DGAT-2 and leptin; the effects are however sex-specific.

Keywords

Adipocyte hypertrophy DGAT-2 FABP-4 Leptin N-3 PUFA Obesity 

Abbreviations

ARA

Arachidonic acid

ALA

Alpha linolenic acid

CREB

cAMP response element binding protein

COX

Cyclooxygenase

CVD

Cardiovascular disease

DGAT

Acyl CoA:diacylglycerol acyltransferase

DHA

Docosahexaenoic acid

DPA

Docosapentaenoic acid

EPA

Eicosapentaenoic acid

FFA

Free fatty acids

FABP-4

Fatty acid binding protein-4

GLC

Gas liquid chromatography

HDL

High density lipoprotein

IL-6

Interleukin-6

LA

Linoleic acid

LDL

Low density lipoprotein

LDL-r

Low density lipoprotein receptor

LPL

Lipoprotein lipase

MUFA

Monounsaturated fatty acid

n-3 PUFA

Omega-3 polyunsaturated fatty acid

n-6 PUFA

Omega-6 polyunsaturated fatty acid

NEFA

Non-esterified fatty acids

PPARγ

Peroxisome proliferator-activated receptor-gamma

PUFA

Polyunsaturated fatty acid

SCD-1

Stearoyl-CoA desaturase-1

SFA

Saturated fatty acid

SREBP-1

Sterol regulatory element binding protein

TC

Total-cholesterol

TAG

Triacylglycerols

TNF-α

Tumor necrosis factor

Notes

Acknowledgments

This research was supported by funds from the Natural Sciences and Engineering Research Council (NSERC) and Canada Foundation for Innovation (CFI). We acknowledge the technical support provided by Sophie Gagnon for her help with GC. We would also like to acknowledge Dr. Sherri Christian for her assistance with measuring the adipocyte size. The authors declare no conflict of interest.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest.

References

  1. 1.
    Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, Sicree RA, Dwyer T, Colagiuri S, Jolley D, Knuiman M, Atkins R, Shaw JE (2002) The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care 25:829–834PubMedCrossRefGoogle Scholar
  2. 2.
    Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL (1998) Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 22:39–47PubMedCrossRefGoogle Scholar
  3. 3.
    Grundy SM (2004) Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 89:2595–2600PubMedCrossRefGoogle Scholar
  4. 4.
    Zou C, Shao J (2008) Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem 19:277–286PubMedCrossRefGoogle Scholar
  5. 5.
    van Harmelen V, Skurk T, Rohrig K, Lee YM, Halbleib M, Aprath-Husmann I, Hauner H (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895PubMedCrossRefGoogle Scholar
  6. 6.
    Engfeldt P, Arner P (1988) Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm Metab Res Suppl 19:26–29PubMedGoogle Scholar
  7. 7.
    Jamdar SC (1978) Glycerolipid biosynthesis in rat adipose tissue. Influence of adipose-cell size and site of adipose tissue on triacylglycerol formation in lean and obese rats. Biochem J 170:153–160PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bell RM, Coleman RA (1980) Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem 49:459–487PubMedCrossRefGoogle Scholar
  9. 9.
    Chen HC, Smith SJ, Tow B, Elias PM, Farese RV Jr (2002) Leptin modulates the effects of acyl CoA:diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J Clin Invest 109:175–181PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV Jr (2004) Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279:11767–11776PubMedCrossRefGoogle Scholar
  11. 11.
    Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T et al (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4:597–609PubMedCrossRefGoogle Scholar
  12. 12.
    Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52:405–413PubMedCrossRefGoogle Scholar
  13. 13.
    Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS (2000) Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141:3388–3396PubMedCrossRefGoogle Scholar
  14. 14.
    Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252PubMedCrossRefGoogle Scholar
  15. 15.
    Guo KY, Halo P, Leibel RL, Zhang Y (2004) Effects of obesity on the relationship of leptin mRNA expression and adipocyte size in anatomically distinct fat depots in mice. Am J Physiol Regul Integr Comp Physiol 287:R112–R119PubMedCrossRefGoogle Scholar
  16. 16.
    Couillard C, Mauriege P, Imbeault P, Prud’homme D, Nadeau A, Tremblay A, Bouchard C, Despres JP (2000) Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia. Int J Obes Relat Metab Disord 24:782–788PubMedCrossRefGoogle Scholar
  17. 17.
    Orio F Jr, Palomba S, Cascella T, Savastano S, Lombardi G, Colao A (2007) Cardiovascular complications of obesity in adolescents. J Endocrinol Invest 30:70–80PubMedCrossRefGoogle Scholar
  18. 18.
    Astrup A, Dyerberg J, Selleck M, Stender S (2008) Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes Rev 9(Suppl 1):48–52PubMedCrossRefGoogle Scholar
  19. 19.
    Ellis JR, McDonald RB, Stern JS (1990) A diet high in fat stimulates adipocyte proliferation in older (22 month) rats. Exp Gerontol 25:141–148PubMedCrossRefGoogle Scholar
  20. 20.
    Shillabeer G, Lau DC (1994) Regulation of new fat cell formation in rats: the role of dietary fats. J Lipid Res 35:592–600PubMedGoogle Scholar
  21. 21.
    Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71:171S–175SPubMedGoogle Scholar
  22. 22.
    Gomez Candela C, Bermejo Lopez LM, Loria Kohen V (2011) Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutr Hosp 26:323–329PubMedGoogle Scholar
  23. 23.
    Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Veck M, Tvrzicka E, Bryhn M, Kopecky J (2004) Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39:1177–1185PubMedCrossRefGoogle Scholar
  24. 24.
    Kuda O, Jelenik T, Jilkova Z, Flachs P, Rossmeisl M, Hensler M, Kazdova L, Ogston N, Baranowski M, Gorski J, Janovska P, Kus V, Polak J, Mohamed-Ali V, Burcelin R, Cinti S, Bryhn M, Kopecky J (2009) n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 52:941–951PubMedCrossRefGoogle Scholar
  25. 25.
    Parrish CC, Pathy DA, Angel A (1990) Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 39:217–219PubMedCrossRefGoogle Scholar
  26. 26.
    Lovejoy JC (2003) The menopause and obesity. Prim Care 30:317–325PubMedCrossRefGoogle Scholar
  27. 27.
    Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisle F (2004) Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med 27:107–116PubMedCrossRefGoogle Scholar
  28. 28.
    Power ML, Schulkin J (2008) Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr 99:931–940PubMedCrossRefGoogle Scholar
  29. 29.
    Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S (2009) Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring) 17:1872–1877CrossRefGoogle Scholar
  30. 30.
    Menegoni F, Galli M, Tacchini E, Vismara L, Cavigioli M, Capodaglio P (2009) Gender-specific effect of obesity on balance. Obesity (Silver Spring) 17:1951–1956CrossRefGoogle Scholar
  31. 31.
    Couillard C, Bergeron N, Prud’homme D, Bergeron J, Tremblay A, Bouchard C, Mauriege P, Despres JP (1999) Gender difference in postprandial lipemia : importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 19:2448–2455PubMedCrossRefGoogle Scholar
  32. 32.
    Morita Y, Iwamoto I, Mizuma N, Kuwahata T, Matsuo T, Yoshinaga M, Douchi T (2006) Precedence of the shift of body-fat distribution over the change in body composition after menopause. J Obstet Gynaecol Res 32:513–516PubMedCrossRefGoogle Scholar
  33. 33.
    Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speizer FE, Hennekens CH (1995) Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. JAMA 273:461–465PubMedCrossRefGoogle Scholar
  34. 34.
    Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, Speizer FE, Hennekens CH (1990) A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med 322:882–889PubMedCrossRefGoogle Scholar
  35. 35.
    Balogun KA, Randunu RS, Cheema SK (2014) The effect of dietary omega-3 polyunsaturated fatty acids on plasma lipids and lipoproteins of C57BL/6 mice is age and sex specific. Prostaglandins Leukot Essent Fatty Acids 91:39–47PubMedCrossRefGoogle Scholar
  36. 36.
    Balogun KA, Cheema SK (2014) The expression of neurotrophins is differentially regulated by omega-3 polyunsaturated fatty acids at weaning and postweaning in C57BL/6 mice cerebral cortex. Neurochem Int 66:33–42PubMedCrossRefGoogle Scholar
  37. 37.
    Balogun KA, Albert CJ, Ford DA, Brown RJ, Cheema SK (2013) Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach. PLoS One 8:e82399PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chechi K, Herzberg GR, Cheema SK (2010) Maternal dietary fat intake during gestation and lactation alters tissue fatty acid composition in the adult offspring of C57Bl/6 mice. Prostaglandins Leukot Essent Fatty Acids 83:97–104PubMedCrossRefGoogle Scholar
  39. 39.
    Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC (1987) Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc Natl Acad Sci USA 84:3763–3767PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D (1990) Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10:316–323PubMedCrossRefGoogle Scholar
  41. 41.
    Surwit RS, Seldin MF, Kuhn CM, Cochrane C, Feinglos MN (1991) Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes 40:82–87PubMedCrossRefGoogle Scholar
  42. 42.
    Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167PubMedCrossRefGoogle Scholar
  43. 43.
    Muhlhausler BS, Cook-Johnson R, James M, Miljkovic D, Duthoit E, Gibson R (2010) Opposing effects of omega-3 and omega-6 long chain polyunsaturated Fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat. J Nutr Metab 2010:927836PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vaidya H, Cheema SK (2015) Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids. Food Nutr Res 59:25866PubMedCrossRefGoogle Scholar
  45. 45.
    Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  46. 46.
    Keenan MHJ RASB (1982) Effect of plasma-membrane phospholipid unsaturation on solute transport into saccharomyces cerevisiae NCYC 366. J Gen Microbiol 128:2547–2556Google Scholar
  47. 47.
    Chen HC, Farese RV Jr (2002) Determination of adipocyte size by computer image analysis. J Lipid Res 43:986–989PubMedGoogle Scholar
  48. 48.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  49. 49.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  51. 51.
    Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA (2010) A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 46:212–223PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ferroni P, Basili S, Falco A, Davi G (2004) Inflammation, insulin resistance, and obesity. Curr Atheroscler Rep 6:424–431PubMedCrossRefGoogle Scholar
  53. 53.
    Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47:348–380PubMedCrossRefGoogle Scholar
  54. 54.
    Conner WE, Lin DS, Colvis C (1996) Differential mobilization of fatty acids from adipose tissue. J Lipid Res 37:290–298PubMedGoogle Scholar
  55. 55.
    Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599PubMedCrossRefGoogle Scholar
  56. 56.
    Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792PubMedCrossRefGoogle Scholar
  57. 57.
    Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM (2005) Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2:251–261PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ (2001) The biology of white adipocyte proliferation. Obes Rev 2:239–254PubMedCrossRefGoogle Scholar
  59. 59.
    Gray SL, Vidal-Puig AJ (2007) Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 65:S7–S12PubMedCrossRefGoogle Scholar
  60. 60.
    Bjorntorp P (1974) Effects of age, sex, and clinical conditions on adipose tissue cellularity in man. Metabolism 23:1091–1102PubMedCrossRefGoogle Scholar
  61. 61.
    Guo SS, Chumlea WC, Roche AF, Siervogel RM (1998) Age- and maturity-related changes in body composition during adolescence into adulthood: the Fels longitudinal study. Appl Radiat Isot 49:581–585PubMedCrossRefGoogle Scholar
  62. 62.
    Roncari DA, Van RL (1978) Promotion of human adipocyte precursor replication by 17beta-estradiol in culture. J Clin Invest 62:503–508PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Childs CE, Romeu-Nadal M, Burdge GC, Calder PC (2008) Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc 67:19–27PubMedCrossRefGoogle Scholar
  64. 64.
    Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869PubMedCrossRefGoogle Scholar
  66. 66.
    Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876PubMedCrossRefGoogle Scholar
  67. 67.
    Yu XX, Murray SF, Pandey SK, Booten SL, Bao D, Song XZ, Kelly S, Chen S, McKay R, Monia BP, Bhanot S (2005) Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42:362–371PubMedCrossRefGoogle Scholar
  68. 68.
    Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386PubMedCrossRefGoogle Scholar
  69. 69.
    Holm G, Jacobsson B, Bjorntorp P, Smith U (1975) Effects of age and cell size on rat adipose tissue metabolism. J Lipid Res 16:461–464PubMedGoogle Scholar
  70. 70.
    Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59:1096–1116PubMedCrossRefGoogle Scholar
  71. 71.
    Baar RA, Dingfelder CS, Smith LA, Bernlohr DA, Wu C, Lange AJ, Parks EJ (2005) Investigation of in vivo fatty acid metabolism in AFABP/aP2(−/−) mice. Am J Physiol Endocrinol Metab 288:E187–E193PubMedCrossRefGoogle Scholar
  72. 72.
    Boord JB, Fazio S, Linton MF (2002) Cytoplasmic fatty acid-binding proteins: emerging roles in metabolism and atherosclerosis. Curr Opin Lipidol 13:141–147PubMedCrossRefGoogle Scholar
  73. 73.
    Pelton PD, Zhou L, Demarest KT, Burris TP (1999) PPARgamma activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun 261:456–458PubMedCrossRefGoogle Scholar
  74. 74.
    Rasouli N, Molavi B, Elbein SC, Kern PA (2007) Ectopic fat accumulation and metabolic syndrome. Diabetes Obes Metab 9:1–10PubMedCrossRefGoogle Scholar
  75. 75.
    Kralisch S, Fasshauer M (2013) Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 56:10–21PubMedCrossRefGoogle Scholar
  76. 76.
    Reinehr T, Stoffel-Wagner B, Roth CL (2007) Adipocyte fatty acid-binding protein in obese children before and after weight loss. Metabolism 56:1735–1741PubMedCrossRefGoogle Scholar
  77. 77.
    Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48PubMedCrossRefGoogle Scholar
  78. 78.
    Schachtrup C, Emmler T, Bleck B, Sandqvist A, Spener F (2004) Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Biochem J 382:239–245PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22:5114–5127PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556PubMedCrossRefGoogle Scholar
  81. 81.
    Reseland JE, Haugen F, Hollung K, Solvoll K, Halvorsen B, Brude IR, Nenseter MS, Christiansen EN, Drevon CA (2001) Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res 42:743–750PubMedGoogle Scholar
  82. 82.
    Mitchell SE, Rees WD, Hardie LJ, Hoggard N, Tadayyon M, Arch JR, Trayhurn P (1997) ob gene expression and secretion of leptin following differentiation of rat preadipocytes to adipocytes in primary culture. Biochem Biophys Res Commun 230:360–364PubMedCrossRefGoogle Scholar
  83. 83.
    Rousseau V, Becker DJ, Ongemba LN, Rahier J, Henquin JC, Brichard SM (1997) Developmental and nutritional changes of ob and PPAR gamma 2 gene expression in rat white adipose tissue. Biochem J 321(Pt 2):451–456PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang Y, Guo KY, Diaz PA, Heo M, Leibel RL (2002) Determinants of leptin gene expression in fat depots of lean mice. Am J Physiol Regul Integr Comp Physiol 282:R226–R234PubMedCrossRefGoogle Scholar
  86. 86.
    Suzuki R, Tobe K, Aoyama M, Sakamoto K, Ohsugi M, Kamei N, Nemoto S, Inoue A, Ito Y, Uchida S, Hara K, Yamauchi T, Kubota N, Terauchi Y, Kadowaki T (2005) Expression of DGAT2 in white adipose tissue is regulated by central leptin action. J Biol Chem 280:3331–3337PubMedCrossRefGoogle Scholar
  87. 87.
    Misra A, Wasir JS, Vikram NK (2005) Waist circumference criteria for the diagnosis of abdominal obesity are not applicable uniformly to all populations and ethnic groups. Nutrition 21:969–976PubMedCrossRefGoogle Scholar
  88. 88.
    Misra A, Vikram NK, Gupta R, Pandey RM, Wasir JS, Gupta VP (2006) Waist circumference cutoff points and action levels for Asian Indians for identification of abdominal obesity. Int J Obes (Lond) 30:106–111CrossRefGoogle Scholar
  89. 89.
    Smith J, Al-Amri M, Dorairaj P, Sniderman A (2006) The adipocyte life cycle hypothesis. Clin Sci (Lond) 110:1–9CrossRefGoogle Scholar
  90. 90.
    Sniderman AD, Cianflone K, Arner P, Summers LK, Frayn KN (1998) The adipocyte, fatty acid trapping, and atherogenesis. Arterioscler Thromb Vasc Biol 18:147–151PubMedCrossRefGoogle Scholar
  91. 91.
    Pegorier JP, Le May C, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134:2444S–2449SPubMedGoogle Scholar
  92. 92.
    Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Takahashi A, Sone H, Osuga Ji J, Gotoda T, Ishibashi S, Yamada N (2002) Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem 277:1705–1711PubMedCrossRefGoogle Scholar
  93. 93.
    Julius U (2003) Influence of plasma free fatty acids on lipoprotein synthesis and diabetic dyslipidemia. Exp Clin Endocrinol Diabetes 111:246–250PubMedCrossRefGoogle Scholar
  94. 94.
    Cox C, Mann J, Sutherland W, Ball M (1995) Individual variation in plasma cholesterol response to dietary saturated fat. BMJ 311:1260–1264PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Katan MB, Beynen AC (1987) Characteristics of human hypo- and hyperresponders to dietary cholesterol. Am J Epidemiol 125:387–399PubMedGoogle Scholar
  96. 96.
    McNamara RK, Able J, Jandacek R, Rider T, Tso P (2009) Gender differences in rat erythrocyte and brain docosahexaenoic acid composition: role of ovarian hormones and dietary omega-3 fatty acid composition. Psychoneuroendocrinology 34:532–539PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  1. 1.Department of BiochemistryMemorial UniversitySt. John’sCanada

Personalised recommendations