, Volume 50, Issue 4, pp 339–347 | Cite as

Postprandial Lipid Responses do not Differ Following Consumption of Butter or Vegetable Oil when Consumed with Omega-3 Polyunsaturated Fatty Acids

  • Cintia B. Dias
  • Melinda Phang
  • Lisa G. Wood
  • Manohar L. Garg
Original Article


Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.


Postprandial lipemia Saturated fat n-6PUFA n-3PUFA Plasma lipids 



Cardiovascular disease


Docosahexaenoic acid


Ethylenediaminetetraacetic acid


Eicosapentaenoic acid


High density lipoprotein cholesterol


Incremental area under the curve


Long chain omega-3 polyunsaturated fatty acids


Low density lipoprotein cholesterol


Polyunsaturated fatty acids


Omega-3 polyunsaturated fatty acids


Omega-3 polyunsaturated fatty acids


Saturated fat


  1. 1.
    Hegsted DM, Mcgandy RB, Myers L, Stare FJ (1965) Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17:281–295PubMedGoogle Scholar
  2. 2.
    Keys A, Anderson JT, Grande F (1957) Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet 273:959–966CrossRefPubMedGoogle Scholar
  3. 3.
    Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MT, Kromhout D, Nedeujkovic S, Punsar S, Seccareccia F, Toshima H (1986) The diet and 15-year death rate in the Seven Countries Study. Am J Epidemiol 124:903–915PubMedGoogle Scholar
  4. 4.
    Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn R, Buzina R, Dontas AS, Fidanza F, Giaipaoli S, Jansen A, Karvonen M, Katan M, Nissinen A, Nedeljkovic S, Pekkanen J, Pekkarinen M, Punsar S, Rasanen L, Simic B, Toshima H (1995) Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med 24:308–315CrossRefPubMedGoogle Scholar
  5. 5.
    Shekelle RB, Shryock AM, Paul O, Lepper M, Stamler J, Liu S, Raynor WJ (1981) Diet, serum cholesterol, and death from coronary heart disease. N Engl J Med 304:65–70CrossRefPubMedGoogle Scholar
  6. 6.
    Yamagishi K, Nettleton JA, Folsom AR (2008) Plasma fatty acid composition and incident heart failure in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 156:965–974CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Houston DK, Ding J, Lee JS, Garcia M, Kanaya AM, Tylavsky FA, Newman AB, Visser M, Kritchevsky SB (2011) Dietary fat and cholesterol and risk of cardiovascular disease in older adults: the Health ABC Study. Nutr Metab Cardiovasc Dis 21:430–437CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Hu FB, Stampfer MJ, Manson JE, Ascherio A, Colditz GA, Speizer FE, Hennekens CH, Willett WC (1999) Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am J Clin Nutr 70:1001–1008PubMedGoogle Scholar
  9. 9.
    Hu FB, Stampfer MJ, Manson JE, Rim E, Colditz GA, Rosner BA, Hennekens CH, Willett WC (1997) Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 337:1491–1499CrossRefPubMedGoogle Scholar
  10. 10.
    Mirmiran P, Ramezankhani A, Azizi F (2009) Combined effects of saturated fat and cholesterol intakes on serum lipids: Tehran Lipid and Glucose Study. Nutrition 25:526–531CrossRefPubMedGoogle Scholar
  11. 11.
    Oh K, Hu FB, Manson JE, Stampfer MJ, Willett WC (2005) Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the Nurses’ Health Study. Am J Epidemiol 161:672–679CrossRefPubMedGoogle Scholar
  12. 12.
    Posner BM, Cobb JL, Belanger AJ, Cupples A, D’Agostino RB, Stokes J (1991) Dietary lipid predictors of coronary heart disease in men. Arch Intern Med 115:1181–1187CrossRefGoogle Scholar
  13. 13.
    Salmerón J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC (2001) Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 73:1019–1026PubMedGoogle Scholar
  14. 14.
    Samuelson G, Bratteby L, Mohsen R, Vessby B (2001) Dietary fat intake in healthy adolescents: inverse relationships between the estimated intake of saturated fatty acids and serum cholesterol. Br J Nutr 85:333–341. doi:10.1079/BJN2000279 CrossRefPubMedGoogle Scholar
  15. 15.
    Tholstrup T, Marckmann P, Jespersen J, Vessby B, Jart A, Brittmarie S (1994) Effect on blood lipids, coagulation, and fibrinolysis of a fat high in myristic acid and a fat high in palmitic acid. Am J Clin Nutr 60:919–925PubMedGoogle Scholar
  16. 16.
    Woodman RJ, Mori TA, Burke V, Puddey IB, Watts GF, Beilin LJ (2002) Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension. Am J Clin Nutr 76:1007–1015PubMedGoogle Scholar
  17. 17.
    Eslick GD, Howe PRC, Smith C, Priest R, Bensoussan A (2009) Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int J Cardiol 136:4–16CrossRefPubMedGoogle Scholar
  18. 18.
    Russo GL (2009) Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77:937–946. doi:10.1016/j.bcp.2008.10.020 CrossRefPubMedGoogle Scholar
  19. 19.
    Christensen JH, Christensen MS, Dyerberg J, Schmidt EB (1999) Heart rate variability and fatty acid content of blood cell membranes: a dose-response study with n-3 fatty acids. Am J Clin Nutr 70:331–337Google Scholar
  20. 20.
    Mantzioris E, Cleland LG, Gibson RA, Neumann MA, Demasi M, James MJ (2000) Biochemical effects of a diet containing foods enriched with n-3 fatty acids. Am J Clin Nutr 72:42–48PubMedGoogle Scholar
  21. 21.
    Studer M, Briel M, Leimenstoll B, Glass TR, Bucher HC (2005) Effect of different antilipidemic agents and diets on mortality. Arch Intern Med 165:725–730CrossRefPubMedGoogle Scholar
  22. 22.
    Ahrens EH, Insull W, Blomstrand R, Hirsch J, Tsaltas T, Peterson M (1957) The influence of dietary fats on serum lipid levels in man. Lancet 1:944–953Google Scholar
  23. 23.
    Shepherd J, Packard CJ, Grundy SM, Yeshurun D, Gotto J, Antonio M, Taunton D (1980) Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J Lipid Res 21:91–99PubMedGoogle Scholar
  24. 24.
    Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR (2013) Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 346. doi:10.1136/bmj.e8707
  25. 25.
    Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J Biol Chem 1:471–477CrossRefGoogle Scholar
  26. 26.
    Friesen RW, Innis SM (2010) Linoleic acid is associated with lower long-chain n-6 and n-3 fatty acids in red blood cell lipids of Canadian pregnant women. Am J Clin Nutr 91:23–31CrossRefPubMedGoogle Scholar
  27. 27.
    Goyens PLL, Spilker ME, Zock PL, Katan MB, Mensink RP (2006) Conversion of alfa-linolenic acid in humans is influenced by the absolute amounts of alfa-linolenic acid and linoleic acid in the diet and not by their ratio. Am J Clin Nutr 84:44–53PubMedGoogle Scholar
  28. 28.
    Liou YA, Innis SM (2009) Dietary linoleic acid has no effect on arachidonic acid, but increases n-6 eicosadienoic acid, and lowers dihomo-γ-linolenic and eicosapentaenoic acid in plasma of adult men. Prostaglandins Leukot Essent Fatty Acids 80:201–206. doi:10.1016/j.plefa.2009.02.003 CrossRefGoogle Scholar
  29. 29.
    Novak EM, Dyer RA, Innis SM (2008) High dietary ω-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res 1237:136–145CrossRefPubMedGoogle Scholar
  30. 30.
    Novak EM, King DJ, Innis SM (2012) Low linoleic acid may facilitate Δ6 desaturase activity and docosahexaenoic acid accretion in human fetal development. Prostaglandins Leukot Essent Fatty Acids 86:93–98CrossRefPubMedGoogle Scholar
  31. 31.
    Rahm JJ, Holman DT (1964) Effect of linoleic acid upon the metabolism of linolenic acid. J Nutr 84:15–19PubMedGoogle Scholar
  32. 32.
    Rosell MS, Lloyd-Wright Z, Appleby PN, Sanders TAB, Allen NE, Key TJ (2005) Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am J Clin Nutr 82:327–334PubMedGoogle Scholar
  33. 33.
    Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47:147–155. doi:10.1016/j.plipres.2007.12.004 CrossRefPubMedGoogle Scholar
  34. 34.
    MacDonald-Wicks LK, Garg ML (2004) Incorporation of n-3 fatty acids into plasma and liver lipids of rats: importance of background dietary fat. Lipids 39:545–551CrossRefPubMedGoogle Scholar
  35. 35.
    Garg ML, Thomson ABR, Clandinin MT (1990) Interactions of saturated, n-6 and n-3 polyunsaturated fatty acids to modulate arachidonic acid metabolism. J Lipid Res 31:271–277PubMedGoogle Scholar
  36. 36.
    Newens KJ, Thompson AK, Jackson KG, Wright J, Williams CM (2011) DHA-rich fish oil reverses the detrimental effects of saturated fatty acids on postprandial vascular reactivity. Am J Clin Nutr 94:742–748. doi:10.3945/ajcn.110.009233 CrossRefPubMedGoogle Scholar
  37. 37.
    Rivellese AA, Maffettone A, Vessby B, Uusitupa M, Hermansen K, Berglund L, Louheranta A, Meyer BJ, Riccardi G (2003) Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis 167:149–158. doi:10.1016/s0021-9150(02)00424-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Bonham MP, Linderborg KM, Dordevic A, Larsen AE, Nguo K, Weir JM, Gran P, Luotonen MK, Meikle PJ, Cameron-Smith D, Kallio HPT, Sinclair AJ (2013) Lipidomic profiling of chylomicron triacylglycerols in response to high fat meals. Lipids 48:39–50CrossRefPubMedGoogle Scholar
  39. 39.
    Masson CJ, Mensink RP (2011) Exchanging saturated fatty acids for (n-6) polyunsaturated fatty acids in a mixed meal may decrease postprandial lipemia and markers of inflammation and endothelial activity in overweight men. J Nutr 141:816–821. doi:10.3945/jn.110.136432 CrossRefPubMedGoogle Scholar
  40. 40.
    Mekki N, Charbonnier M, Borel P, Leonardi J, Juhel C, Portugal H, Lairon D (2002) Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132:3642–3649PubMedGoogle Scholar
  41. 41.
    Jackson KG, Wolstencroft EJ, Bateman PA, Yaqoob P, Williams CM (2005) Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin sensitivity and lipoprotein regulation? Br J Nutr 93:693–700. doi:10.1079/BJN20051410 CrossRefPubMedGoogle Scholar
  42. 42.
    Tulk HMF, Robinson LE (2009) Modifying the n-6/n-3 polyunsaturated fatty acid ratio of a high-saturated fat challenge does not acutely attenuate postprandial changes in inflammatory markers in men with metabolic syndrome. Metab Clin Exp 58:1709–1716CrossRefPubMedGoogle Scholar
  43. 43.
    Dias CB, Garg R, Wood LG, Garg ML (2014) Saturated fat consumption may not be the main cause of increased blood lipid levels. Med Hypotheses 82:187–195. doi:10.1016/j.mehy.2013.11.036 CrossRefPubMedGoogle Scholar
  44. 44.
    Karvonen HM, Tapola NS, Uusitupa MI, Sarkkinen ES (2002) The effect of vegetable oil-based cheese on serum total and lipoprotein lipids. Eur J Clin Nutr 56:1094–1101Google Scholar
  45. 45.
    Kagan ML, West AL, Zante C, Calder PC (2013) Acute appearance of fatty acids in human plasma—a comparative study between polar-lipid rich oil from the microalgae Nannochloropsis oculata and krill oil in healthy young males. Lipids Health Dis 12:102Google Scholar
  46. 46.
    Lepage G, Roy GC (1986) Direct trans-esterification of all classes of lipid in an onestep reaction. J Lipid Res 27:114–120PubMedGoogle Scholar
  47. 47.
    Wood LG, Fitzgerald DA, Gibson PG, Cooper DM, Garg ML (2002) Increased plasma fatty acid concentrations after respiratory exacerbations are associated with elevated oxidative stress in cystic fibrosis patients. Am J Clin Nutr 75:668–675PubMedGoogle Scholar
  48. 48.
    Mustad VA, Etherton TD, Cooper AD, Mastro AM, Pearson TA, Jonnalagadda SS, Kris-Etherton PM (1997) Reducing saturated fat intake is associated with increased levels of LDL receptors on mononuclear cells in healthy men and women. J Lipid Res 38:459–468PubMedGoogle Scholar
  49. 49.
    Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, Berglund J, Pulkki K, Basu S, Uusitupa M, Rudling M, Arner P, Cederholm T, Ahlström H, Risérus U (2012) Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr 95:1003–1012. doi:10.3945/ajcn.111.030114 CrossRefPubMedGoogle Scholar
  50. 50.
    Bergeron N, Havel RJ (1995) Influence of diets rich in saturated and omega-6 polyunsaturated fatty acids on the postprandial responses of apolipoproteins B-48, B-100, E, and lipids in triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 15:2111–2121. doi:10.1161/01.atv.15.12.2111 CrossRefPubMedGoogle Scholar
  51. 51.
    Mustad VA, Ellsworth JL, Cooper AD, Kris-Etherton PM, Etherto TD (1996) Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs. J Lipid Res 37:2310–2323PubMedGoogle Scholar
  52. 52.
    Castro GR, Fielding CJ (1985) Effects of postprandial lipemia on plasma cholesterol metabolism. J Clin Investig 75:874–882. doi:10.1172/JCI111786 CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Fernandez ML, West KL (2005) Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr 135:2075–2078PubMedGoogle Scholar
  54. 54.
    Wilkinson J, Higgins JA, Fitzsimmons C, Bowyer DE (1998) Dietary fish oils modify the assembly of VLDL and expression of the LDL receptor in rabbit liver. Arterioscler Thromb Vasc Biol 18:1490–1497. doi:10.1161/01.ATV.18.9.1490 CrossRefPubMedGoogle Scholar
  55. 55.
    Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta Rev Biomembr 779:89–137. doi:10.1016/0304-4157(84)90005-4 CrossRefGoogle Scholar
  56. 56.
    Couillard C, Bergeron N, Prud’homme D, Bergeron J, Tremblay A, Bouchard C, Mauriège P, Després J-P (1999) Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 19:2448–2455. doi:10.1161/01.atv.19.10.2448 CrossRefPubMedGoogle Scholar
  57. 57.
    Koutsari C, Zagana A, Tzoras I, Sidossis LS, Matalas AL (2004) Gender influence on plasma triacylglycerol response to meals with different monounsaturated and saturated fatty acid content. Eur J Clin Nutr 58:295–502CrossRefGoogle Scholar
  58. 58.
    De Marinis E, Martini C, Trentalance A, Pallottini V (2008) Sex differences in hepatic regulation of cholesterol homeostasis. J Endocrinol 198:635–643. doi:10.1677/joe-08-0242 CrossRefPubMedGoogle Scholar
  59. 59.
    Distefano E, Marino M, Gillette JA, Hanstein B, Pallottini V, Brüning J, Krone W, Trentalance A (2002) Role of tyrosine kinase signaling in estrogen-induced LDL receptor gene expression in HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 1580:145–149. doi:10.1016/S1388-1981(01)00197-4 CrossRefGoogle Scholar
  60. 60.
    Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350. doi:10.3168/jds.S0022-0302(02)74079-4 CrossRefPubMedGoogle Scholar
  61. 61.
    Legrand P, Beauchamp E, Catheline D, Pédrono F, Rioux V (2010) Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids 45:975–986. doi:10.1007/s11745-010-3481-5 CrossRefPubMedGoogle Scholar
  62. 62.
    Parodi PW (2009) Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int Dairy J 19:345–361CrossRefGoogle Scholar
  63. 63.
    Ramı́rez M, Amate L, Gil A (2001) Absorption and distribution of dietary fatty acids from different sources. Early Hum Dev 65(Supplement 2):S95–S101. doi:10.1016/S0378-3782(01)00211-0 CrossRefPubMedGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  • Cintia B. Dias
    • 1
  • Melinda Phang
    • 1
  • Lisa G. Wood
    • 2
  • Manohar L. Garg
    • 1
  1. 1.Nutraceuticals Research Group, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanAustralia
  2. 2.Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanAustralia

Personalised recommendations