Lipids

, Volume 50, Issue 2, pp 121–129 | Cite as

EPA and DHA Exposure Alters the Inflammatory Response but not the Surface Expression of Toll-like Receptor 4 in Macrophages

  • Kaori L. Honda
  • Stefania Lamon-Fava
  • Nirupa R. Matthan
  • Dayong Wu
  • Alice H. Lichtenstein
Original Article

Abstract

Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their respective enrichment in cell membranes have been negatively associated with atherosclerotic lesion development. This effect may be mediated, in part, by dampened inflammatory response of macrophages triggered by toll-like receptor 4 (TLR4) activation. This study investigated the influence of membrane fatty acid profile on TLR4-mediated inflammation in RAW 264.7 macrophages. Cells pretreated with myristic acid (MA), EPA, DHA or vehicle control for 24 h were stimulated with ultra-pure LPS, a specific TLR4 agonist, for 6 or 24 h, corresponding to early and late stages of TNFα and IL-6 protein induction. Treatment significantly increased cell membrane MA, EPA, and DHA by 4.5-, 20.6-, and 8.9-fold, respectively. MA significantly increased IL-6 secretion 6 h post-exposure to the fatty acid, but did not change TNFα secretion in response to any other treatment condition. EPA and DHA significantly reduced TNFα secretion by 36 and 41 %, respectively, in cells stimulated for 24 h but not 6 h. In contrast, EPA and DHA significantly reduced IL-6 secretion at both 6 h (67 and 72 %, respectively) and 24 h (69 and 72 %, respectively). MA or DHA treatment had no significant effect compared to vehicle on factors influencing cellular LPS recognition, including LPS-cell association, and cell surface expression of TLR4, TLR4-MD2 complex, and CD14. These data suggest that membrane fatty acid profiles influence the TLR4-mediated inflammatory response in macrophages, via mechanisms that occur downstream of TLR4 receptor activation.

Keywords

Eicosapentaenoic acid Docosahexaenoic acid Macrophages Toll-like receptor 4 Tumor necrosis factor alpha Interleukin 6 

Abbreviations

AA

Arachidonic acid (20:4n-6)

ANOVA

Analysis of variance

APC

Allophycocyanin

BSA

Bovine serum albumin

CD14

Cluster of differentiation 14

DHA

Docosahexaenoic acid (22:6n-3)

DMEM

Dulbecco’s Modified Eagle’s Medium

DPA

Docosapentaenoic acid (22:5n-3)

ELISA

Enzyme-linked immunosorbent assay

EPA

Eicosapentaenoic acid (20:5n-3)

FBS

Fetal bovine serum

FITC-LPS

Fluorescein isothiocyanate-conjugated lipopolysaccharide

GPR120

G-Protein coupled receptor

IC

Isotype control

IL-6

Interleukin 6

LPS

Lipopolysaccharide

MA

Myristic acid (14:0)

MAPK

Mitogen activated protein kinase

MD2

Myeloid differentiation 2

MFI

Mean fluorescence intensity

MyD88

Myeloid differentiation primary response gene 88

NFκB

Nuclear factor kappa B

PBS

Phosphate buffered saline

PE

Phycoerythrin

TLR2

Toll-like receptor 2

TLR4

Toll-like receptor 4

TNFα

Tumor necrosis factor alpha

References

  1. 1.
    Pasterkamp G, Van Keulen JK, De Kleijn DP (2004) Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Invest 34(5):328–334PubMedCrossRefGoogle Scholar
  2. 2.
    Gay NJ, Gangloff M (2007) Structure and function of toll receptors and their ligands. Annu Rev Biochem 76:141–165PubMedCrossRefGoogle Scholar
  3. 3.
    Schwartz EA, Reaven PD (2012) Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta 1821(5):858–866PubMedCrossRefGoogle Scholar
  4. 4.
    Janssens S, Beyaert R (2003) Role of toll-like receptors in pathogen recognition. Clin Microbiol Rev 16(4):637–646PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kawai T, Akira S (2005) Toll-like receptor downstream signaling. Arthritis Res Ther 7(1):12–19PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105(10):1158–1161PubMedGoogle Scholar
  7. 7.
    Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J, Kaul S, Arditi M (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104(25):3103–3108PubMedCrossRefGoogle Scholar
  8. 8.
    Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101(29):10679–10684PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10(4):416–421PubMedCrossRefGoogle Scholar
  10. 10.
    Kelley DS, Adkins Y (2012) Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. Proc Nutr Soc 71(2):322–331PubMedCrossRefGoogle Scholar
  11. 11.
    Sekikawa A, Kadowaki T, El-Saed A, Okamura T, Sutton-Tyrrell K, Nakamura Y, Evans RW, Mitsunami K, Edmundowicz D, Nishio Y, Nakata K, Kadota A, Otake T, Miura K, Choo J, Abbott RD, Kuller LH, Curb JD, Ueshima H, ERA JUMP Study group (2011) Differential association of docosahexaenoic and eicosapentaenoic acids with carotid intima-media thickness. Stroke 42(9):2538–2543PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Erkkila AT, Matthan NR, Herrington DM, Lichtenstein AH (2006) Higher plasma docosahexaenoic acid is associated with reduced progression of coronary atherosclerosis in women with CAD. J Lipid Res 47(12):2814–2819PubMedCrossRefGoogle Scholar
  13. 13.
    Kim YJ, Kim OY, Cho Y, Chung JH, Jung YS, Hwang GS, Shin MJ (2012) Plasma phospholipid fatty acid composition in ischemic stroke: importance of docosahexaenoic acid in the risk for intracranial atherosclerotic stenosis. Atherosclerosis 225(2):418–424PubMedCrossRefGoogle Scholar
  14. 14.
    Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32(9):2045–2051PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Meydani SN, Endres S, Woods MM, Goldin BR, Soo C, Morrill-Labrode A, Dinarello CA, Gorbach SL (1991) Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr 121(4):547–555PubMedGoogle Scholar
  16. 16.
    Meydani SN, Lichtenstein AH, Cornwall S, Meydani M, Goldin BR, Rasmussen H, Dinarello CA, Schaefer EJ (1993) Immunologic effects of national cholesterol education panel step-2 diets with and without fish-derived N-3 fatty acid enrichment. J Clin Invest 92(1):105–113PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Trebble T, Arden NK, Stroud MA, Wootton SA, Burdge GC, Miles EA, Ballinger AB, Thompson RL, Calder PC (2003) Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr 90(2):405–412PubMedCrossRefGoogle Scholar
  18. 18.
    Vedin I, Cederholm T, Freund Levi Y, Basun H, Garlind A, Faxen Irving G, Jonhagen ME, Vessby B, Wahlund LO, Palmblad J (2008) Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study. Am J Clin Nutr 87(6):1616–1622PubMedGoogle Scholar
  19. 19.
    Wallace FA, Miles EA, Calder PC (2003) Comparison of the effects of linseed oil and different doses of fish oil on mononuclear cell function in healthy human subjects. Br J Nutr 89(5):679–689PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang J, Wang C, Li L, Man Q, Meng L, Song P, Froyland L, Du ZY (2012) Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Br J Nutr 108(8):1455–1465PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang J, Wang C, Li L, Man Q, Song P, Meng L, Du ZY, Froyland L (2010) Inclusion of Atlantic salmon in the Chinese diet reduces cardiovascular disease risk markers in dyslipidemic adult men. Nutr Res 30(7):447–454PubMedCrossRefGoogle Scholar
  22. 22.
    Wang S, Wu D, Matthan NR, Lamon-Fava S, Lecker JL, Lichtenstein AH (2009) Reduction in dietary omega-6 polyunsaturated fatty acids: eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 204(1):147–155PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yaqoob P, Calder P (1995) Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages. Cell Immunol 163(1):120–128PubMedCrossRefGoogle Scholar
  24. 24.
    Martins de Lima-Salgado T, Coccuzzo Sampaio S, Cury-Boaventura MF, Curi R (2011) Modulatory effect of fatty acids on fungicidal activity, respiratory burst and TNF-alpha and IL-6 production in J774 murine macrophages. Br J Nutr 105(8):1173–1179PubMedCrossRefGoogle Scholar
  25. 25.
    Oliver E, McGillicuddy FC, Harford KA, Reynolds CM, Phillips CM, Ferguson JF, Roche HM (2012) Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J Nutr Biochem 23(9):1192–1200PubMedCrossRefGoogle Scholar
  26. 26.
    Weldon SM, Mullen AC, Loscher CE, Hurley LA, Roche HM (2007) Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem 18(4):250–258PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao Y, Joshi-Barve S, Barve S, Chen LH (2004) Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J Am Coll Nutr 23(1):71–78PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao G, Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, West SG, Kris-Etherton PM (2005) Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 336(3):909–917PubMedCrossRefGoogle Scholar
  29. 29.
    Wang S, Wu D, Lamon-Fava S, Matthan NR, Honda KL, Lichtenstein AH (2009) In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. Br J Nutr 102(4):497–501PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rutledge HR, Jiang W, Yang J, Warg LA, Schwartz DA, Pisetsky DS, Yang IV (2012) Gene expression profiles of RAW264.7 macrophages stimulated with preparations of LPS differing in isolation and purity. Innate Immun 18(1):80–88PubMedCrossRefGoogle Scholar
  31. 31.
    Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165(2):618–622PubMedCrossRefGoogle Scholar
  32. 32.
    De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S (2008) Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 105(2):296–307PubMedCrossRefGoogle Scholar
  33. 33.
    Chu AJ, Walton MA, Prasad JK, Seto A (1999) Blockade by polyunsaturated n-3 fatty acids of endotoxin-induced monocytic tissue factor activation is mediated by the depressed receptor expression in THP-1 cells. J Surg Res 87(2):217–224PubMedCrossRefGoogle Scholar
  34. 34.
    Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, Hwang DH (2003) Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res 44(3):479–486PubMedCrossRefGoogle Scholar
  35. 35.
    Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH (2009) Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 284(40):27384–27392PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, Adams SH, Hwang DH (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 53(9):2002–2013PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, Sizemore N, Hwang DH (2003) Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 278(39):37041–37051PubMedCrossRefGoogle Scholar
  38. 38.
    Lecker JL, Matthan NR, Billheimer JT, Rader DJ, Lichtenstein AH (2010) Impact of dietary fat type within the context of altered cholesterol homeostasis on cholesterol and lipoprotein metabolism in the F1B hamster. Metabolism 59(10):1491–1501PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Matthan NR, Ip B, Resteghini N, Ausman LM, Lichtenstein AH (2010) Long-term fatty acid stability in human serum cholesteryl ester, triglyceride, and phospholipid fractions. J Lipid Res 51(9):2826–2832PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wang J, Pae M, Meydani SN, Wu D (2012) Epigallocatechin-3-gallate inhibits expression of receptors for T cell regulatory cytokines and their downstream signaling in mouse CD4+ T cells. J Nutr 142(3):566–571PubMedCrossRefGoogle Scholar
  41. 41.
    Norris PC, Dennis EA (2012) Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci USA 109(22):8517–8522PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276(20):16683–16689PubMedCrossRefGoogle Scholar
  43. 43.
    Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, Adams SH, Hwang DH (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 53(9):2002–2013PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Haversen L, Danielsson KN, Fogelstrand L, Wiklund O (2009) Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202(2):382–393PubMedCrossRefGoogle Scholar
  45. 45.
    Chang CF, Chau YP, Kung HN, Lu KS (2012) The lipopolysaccharide-induced pro-inflammatory response in RAW264.7 cells is attenuated by an unsaturated fatty acid-bovine serum albumin complex and enhanced by a saturated fatty acid-bovine serum albumin complex. Inflamm Res 61(2):151–160PubMedCrossRefGoogle Scholar
  46. 46.
    Schwartz EA, Zhang WY, Karnik SK, Borwege S, Anand VR, Laine PS, Su Y, Reaven PD (2010) Nutrient modification of the innate immune response: a novel mechanism by which saturated fatty acids greatly amplify monocyte inflammation. Arterioscler Thromb Vasc Biol 30(4):802–808PubMedCrossRefGoogle Scholar
  47. 47.
    Fan YY, Ly LH, Barhoumi R, McMurray DN, Chapkin RS (2004) Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J Immunol 173(10):6151–6160PubMedCrossRefGoogle Scholar
  48. 48.
    Stulnig TM, Huber J, Leitinger N, Imre EM, Angelisova P, Nowotny P, Waldhausl W (2001) Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem 276(40):37335–37340PubMedCrossRefGoogle Scholar
  49. 49.
    Mullen A, Loscher CE, Roche HM (2010) Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages. J Nutr Biochem 21(5):444–450PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Kaori L. Honda
    • 1
  • Stefania Lamon-Fava
    • 1
  • Nirupa R. Matthan
    • 1
  • Dayong Wu
    • 1
  • Alice H. Lichtenstein
    • 1
  1. 1.Cardiovascular Nutrition LaboratoryJean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonUSA

Personalised recommendations