Lipids

, Volume 48, Issue 12, pp 1253–1267 | Cite as

Molecular Species of Phospholipids with Very Long Chain Fatty Acids in Skin Fibroblasts of Zellweger Syndrome

  • Kotaro Hama
  • Toru Nagai
  • Chiho Nishizawa
  • Kazutaka Ikeda
  • Masashi Morita
  • Noriko Satoh
  • Hiroki Nakanishi
  • Tsuneo Imanaka
  • Nobuyuki Shimozawa
  • Ryo Taguchi
  • Keizo Inoue
  • Kazuaki Yokoyama
Original Article

Abstract

The ratio of C26:0/C22:0 fatty acids in patient lipids is widely accepted as a critical clinical criterion of peroxisomal diseases, such as Zellweger syndrome and X-linked adrenoleukodystrophy (X-ALD). However, phospholipid molecular species with very long chain fatty acids (VLCFA) have not been precisely characterized. In the present study, the structures of such molecules in fibroblasts of Zellweger syndrome and X-ALD were examined using LC–ESI–MS/MS analysis. In fibroblasts from Zellweger patients, a large number of VLCFA-containing molecular species were detected in several phospholipid classes as well as neutral lipids, including triacylglycerol and cholesteryl esters. Among these lipids, phosphatidylcholine showed the most diversity in the structures of VLCFA-containing molecular species. Some VLCFA possessed longer carbon chains and/or larger number of double bonds than C26:0-fatty acid (FA). Similar VLCFA were also found in other phospholipid classes, such as phosphatidylethanolamine and phosphatidylserine. In addition, VLCFA-containing phospholipid species showed some differences among fibroblasts from Zellweger patients. It appears that phospholipids with VLCFA, with or without double bonds, as well as C26:0-FA might affect cellular functions, thus leading to the pathogenesis of peroxisomal diseases, such as Zellweger syndrome and X-ALD.

Keywords

Zellweger syndrome Very long chain fatty acids Liquid chromatography–electrospray ionization–tandem mass spectrometry Phosphatidylcholine Phosphatidylethanolamine Phosphatidylserine 

Abbreviations

ABCD1

ATP-binding cassette protein D1

X-ALD

X-linked adrenoleukodystrophy

CE

Cholesteryl ester

LC–ESI–MS/MS

Liquid chromatography–electrospray ionization–tandem mass spectrometry

MS

Mass spectrometry

PtdCho or PC

Phosphatidylcholine

PtdEtn or PE

Phosphatidylethanolamine

PtdGro or PG

Phosphatidylglycerol

PtdIns or PI

Phosphatidylinositol

PtdSer or PS

Phosphatidylserine

TAG or TG

Triacylglycerol

VLCFA

Very long chain fatty acid(s)

References

  1. 1.
    Poulos A (1995) Very long chain fatty acids in higher animals–a review. Lipids 30:1–14PubMedCrossRefGoogle Scholar
  2. 2.
    Uchida Y, Holleran WM (2008) Omega-O-acylceramide, a lipid essential for mammalian survival. J Dermatol Sci 51:77–87PubMedCrossRefGoogle Scholar
  3. 3.
    Agbaga MP, Mandal MN, Anderson RE (2008) Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 51:1624–1642CrossRefGoogle Scholar
  4. 4.
    Zadravec D, Tvrdik P, Guillou H, Haslam R, Kobayashi T, Napier JA, Capecchi MR, Jacobsson A (2011) ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice. J Lipid Res 52:245–255PubMedCrossRefGoogle Scholar
  5. 5.
    Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE (2008) Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci USA 105:12843–12848PubMedCrossRefGoogle Scholar
  6. 6.
    Moser HW, Moser AB (1996) Very long-chain fatty acids in diagnosis, pathogenesis, and therapy of peroxisomal disorders. Lipids 31(Suppl):S141–S144PubMedCrossRefGoogle Scholar
  7. 7.
    Moser HW (1997) Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120:1485–1508PubMedCrossRefGoogle Scholar
  8. 8.
    Igarashi M, Schaumburg HH, Powers J, Kishmoto Y, Kolodny E, Suzuki K (1976) Fatty acid abnormality in adrenoleukodystrophy. J Neurochem 26:851–860PubMedCrossRefGoogle Scholar
  9. 9.
    Brown FR 3rd, McAdams AJ, Cummins JW, Konkol R, Singh I, Moser AB, Moser HW (1982) Cerebro–hepato–renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids. Johns Hopkins Med J 151:344–351PubMedGoogle Scholar
  10. 10.
    Mosser J, Lutz Y, Stoeckel ME, Sarde CO, Kretz C, Douar AM, Lopez J, Aubourg P, Mandel JL (1994) The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet 3:265–271PubMedCrossRefGoogle Scholar
  11. 11.
    Shimozawa N, Tsukamoto T, Suzuki Y, Orii T, Shirayoshi Y, Mori T, Fujiki Y (1992) A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science (New York, NY) 255:1132–1134CrossRefGoogle Scholar
  12. 12.
    Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763:1733–1748PubMedCrossRefGoogle Scholar
  13. 13.
    Hein S, Schonfeld P, Kahlert S, Reiser G (2008) Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum Mol Genet 17:1750–1761PubMedCrossRefGoogle Scholar
  14. 14.
    Eichler FS, Ren JQ, Cossoy M, Rietsch AM, Nagpal S, Moser AB, Frosch MP, Ransohoff RM (2008) Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol 63:29–742CrossRefGoogle Scholar
  15. 15.
    Moser HW, Moser AB, Kawamura N, Murphy J, Suzuki K, Schaumburg H, Kishimoto Y (1980) Adrenoleukodystrophy: elevated C26 fatty acid in cultured skin fibroblasts. Ann Neurol 7:542–549PubMedCrossRefGoogle Scholar
  16. 16.
    Hubbard WC, Moser AB, Liu AC, Jones RO, Steinberg SJ, Lorey F, Panny SR, Vogt RF Jr, Macaya D, Turgeon CT, Tortorelli S, Raymond GV (2009) Newborn screening for X-linked adrenoleukodystrophy (X-ALD): validation of a combined liquid chromatography–tandem mass spectrometric (LC–MS/MS) method. Mol Genet Metab 97:12–220CrossRefGoogle Scholar
  17. 17.
    Al-Dirbashi OY, Santa T, Rashed MS, Al-Hassnan Z, Shimozawa N, Chedrawi A, Jacob M, Al-Mokhadab M (2008) Rapid UPLC-MS/MS method for routine analysis of plasma pristanic, phytanic, and very long chain fatty acid markers of peroxisomal disorders. J Lipid Res 49:1855–1862PubMedCrossRefGoogle Scholar
  18. 18.
    Haynes CA, De Jesus VR (2012) Improved analysis of C26:0-lysophosphatidylcholine in dried-blood spots via negative ion mode HPLC–ESI–MS/MS for X-linked adrenoleukodystrophy newborn screening. Clin Chim Acta 413:1217–1221PubMedCrossRefGoogle Scholar
  19. 19.
    Morita M, Takahashi I, Kanai M, Okafuji F, Iwashima M, Hayashi T, Watanabe S, Hamazaki T, Shimozawa N, Suzuki Y, Furuya H, Yamada T, Imanaka T (2005) Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid beta-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett 579:409–414PubMedCrossRefGoogle Scholar
  20. 20.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  21. 21.
    Yokoyama K, Saitoh S, Ishida M, Yamakawa Y, Nakamura K, Inoue K, Taguchi R, Tokumura A, Nishijima M, Yanagida M, Setaka M (2001) Very-long-chain fatty acid-containing phospholipids accumulate in fatty acid synthase temperature-sensitive mutant strains of the fission yeast Schizosaccharomyces pombe fas2/lsd1. Biochim Biophys Acta 1532:223–233PubMedCrossRefGoogle Scholar
  22. 22.
    Ikeda K, Oike Y, Shimizu T, Taguchi R (2009) Global analysis of triacylglycerols including oxidized molecular species by reverse-phase high resolution LC/ESI-QTOF MS/MS. J Chromatogr B 877:2639–2647CrossRefGoogle Scholar
  23. 23.
    Nakanishi H, Iida Y, Shimizu T, Taguchi R (2009) Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J Chromatogr B 877:1366–1374CrossRefGoogle Scholar
  24. 24.
    Nakanishi H, Iida Y, Shimizu T, Taguchi R (2010) Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS. J Biochem 147:245–256PubMedCrossRefGoogle Scholar
  25. 25.
    Hou W, Zhou H, Bou Khalil M, Seebun D, Bennett SA, Figeys D (2011) Lyso-form fragment ions facilitate the determination of stereospecificity of diacyl glycerophospholipids. Rapid Commun Mass Spectrom 25:205–217PubMedCrossRefGoogle Scholar
  26. 26.
    Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) Focused lipidomics by tandem mass spectrometry. J Chromatogr B 823:6–36CrossRefGoogle Scholar
  27. 27.
    Poulos A, Sharp P, Singh H, Johnson D, Fellenberg A, Pollard A (1986) Detection of a homologous series of C26–C38 polyenoic fatty acids in the brain of patients without peroxisomes (Zellweger’s syndrome). Biochem J 235:607–610PubMedGoogle Scholar
  28. 28.
    Poulos A, Sharp P, Johnson D (1989) Plasma polyenoic very-long-chain fatty acids in peroxisomal disease: biochemical discrimination of Zellweger’s syndrome from other phenotypes. Neurology 39:44–47PubMedCrossRefGoogle Scholar
  29. 29.
    Morita M, Kanai M, Mizuno S, Iwashima M, Hayashi T, Shimozawa N, Suzuki Y, Imanaka T (2008) Baicalein 5,6,7-trimethyl ether activates peroxisomal but not mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 31:442–449PubMedCrossRefGoogle Scholar
  30. 30.
    Christensen E, Hagve TA, Christophersen BO (1988) The Zellweger syndrome: deficient chain-shortening of erucic acid (22:1 (n-9)) and adrenic acid (22:4 (n-6)) in cultured skin fibroblasts. Biochim Biophys Acta 959:134–142PubMedCrossRefGoogle Scholar
  31. 31.
    Christensen E, Gronn M, Hagve TA, Kase BF, Christophersen BO (1989) Adrenoleukodystrophy. The chain shortening of erucic acid (22:1(n-9)) and adrenic acid (22:4(n-6)) is deficient in neonatal adrenoleukodystrophy and normal in X-linked adrenoleukodistrophy skin fibroblasts. Biochim Biophys Acta 1002:79–83PubMedCrossRefGoogle Scholar
  32. 32.
    Street JM, Johnson DW, Singh H, Poulos A (1989) Metabolism of saturated and polyunsaturated fatty acids by normal and Zellweger syndrome skin fibroblasts. Biochem J 260:647–655PubMedGoogle Scholar
  33. 33.
    Gronn M, Christensen E, Hagve TA, Christophersen BO (1990) The Zellweger syndrome: deficient conversion of docosahexaenoic acid (22:6(n-3)) to eicosapentaenoic acid (20:5(n-3)) and normal delta 4-desaturase activity in cultured skin fibroblasts. Biochim Biophys Acta 1044:249–254PubMedCrossRefGoogle Scholar
  34. 34.
    Han X, Gross RW (1995) Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 6:1202–1210PubMedCrossRefGoogle Scholar
  35. 35.
    Hsu FF, Turk J (2000) Charge-remote and charge-driven fragmentation processes in diacyl glycerophosphoethanolamine upon low-energy collisional activation: a mechanistic proposal. J Am Soc Mass Spectrom 11:892–899PubMedCrossRefGoogle Scholar
  36. 36.
    Whitcomb RW, Linehan WM, Knazek RA (1988) Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro. J Clin Invest 81:185–188PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  • Kotaro Hama
    • 1
  • Toru Nagai
    • 1
  • Chiho Nishizawa
    • 1
  • Kazutaka Ikeda
    • 2
    • 6
  • Masashi Morita
    • 3
  • Noriko Satoh
    • 1
  • Hiroki Nakanishi
    • 2
    • 7
  • Tsuneo Imanaka
    • 3
  • Nobuyuki Shimozawa
    • 4
  • Ryo Taguchi
    • 2
    • 5
    • 8
  • Keizo Inoue
    • 1
  • Kazuaki Yokoyama
    • 1
    • 5
  1. 1.Faculty of Pharmaceutical SciencesTeikyo UniversityTokyoJapan
  2. 2.Department of Metabolome, Graduate School of MedicineThe University of TokyoTokyoJapan
  3. 3.Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  4. 4.Division of Genomic Research, Life Science Research CenterGifu UniversityGifuJapan
  5. 5.CREST, JSTKawaguchiJapan
  6. 6.Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
  7. 7.Research Center for BiosignalAkita UniversityAkitaJapan
  8. 8.Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityKasugaiJapan

Personalised recommendations