Lipids

, Volume 48, Issue 9, pp 929–937 | Cite as

Fatty Acid Profile of the Initial Oral Biofilm (Pellicle): an In-Situ Study

  • Marco Reich
  • Klaus Kümmerer
  • Ali Al-Ahmad
  • Christian Hannig
Original Article

Abstract

The first step of bioadhesion on dental surfaces is the formation of the acquired pellicle. This mainly acellular layer is formed instantaneously on all solid surfaces exposed to oral fluids. It is composed of proteins, glycoproteins and lipids. However, information on the lipid composition is sparse. The aim of the present study was to evaluate the fatty acid (FA) profile of the in-situ pellicle for the first time. Furthermore, the impact of rinses with safflower oil on the pellicle’s FA composition was investigated. Pellicles were formed in situ on bovine enamel slabs mounted on individual upper jaw splints. The splints were carried by ten subjects over durations of 3–240 min. After comprehensive sample preparation, gas chromatography coupled with electron impact ionization mass spectrometry (GC–EI/MS) was used in order to characterize qualitatively and quantitatively a wide range of FA (C12–C24). The relative FA profiles of the pellicle samples gained from different subjects were remarkably similar, whereas the amount of FA showed significant interindividual variability. An increase in FA in the pellicle was observed over time. The application of rinses with safflower oil resulted in an accumulation of its specific FA in the pellicle. Pellicle formation is a highly selective process that does not correlate directly with salivary composition, as shown for FA.

Keywords

Fatty acid composition GC–MS Extraction Transesterification Biofilm Pellicle In situ Safflower oil Bioadhesion Saliva 

Abbreviations

BAME

Bacterial acid methyl ester

EDTA

Ethylenediaminetetraacetic acid

EI

Electron impact

FA

Fatty acid(s)

FAME

Fatty acid methyl ester(s)

GC

Gas chromatography

IS

Internal standard

LC

Liquid chromatography

LOQ

Limit of quantification

MS

Mass spectrometry

MSD

Mass selective detector

QC

Quality control

RT

Retention time

SIM

Selected ion monitoring

TEM

Transmission electron microscopy

References

  1. 1.
    Blinkhorn AS, Davies RM (1996) Caries prevention. A continued need worldwide. Int Dent J 46:119–125PubMedGoogle Scholar
  2. 2.
    Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century-the approach of the WHO global oral health programme. Community Dent Oral Epidemiol 31(Suppl 1):3–23PubMedCrossRefGoogle Scholar
  3. 3.
    Bagramian RA, Garcia-Godoy F, Volpe AR (2009) The global increase in dental caries. A pending public health crisis. Am J Dent 22:3–8PubMedGoogle Scholar
  4. 4.
    Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38:204–211PubMedCrossRefGoogle Scholar
  5. 5.
    Marsh PD (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15PubMedCrossRefGoogle Scholar
  6. 6.
    Lendenmann U, Grogan J, Oppenheim F (2000) Saliva and dental pellicle—a review. Adv Dent Res 14:22–28PubMedCrossRefGoogle Scholar
  7. 7.
    Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64PubMedGoogle Scholar
  8. 8.
    Hannig C, Hannig M (2009) The oral cavity-a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13:123–139PubMedCrossRefGoogle Scholar
  9. 9.
    Vacca Smith AM, Bowen WH (2000) In situ studies of pellicle formation on hydroxyapatite discs. Arch Oral Biol 45:277–291PubMedCrossRefGoogle Scholar
  10. 10.
    Siqueira WL, Custodio W, McDonald EE (2012) New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. doi:10.1177/0022034512462578 PubMedGoogle Scholar
  11. 11.
    Slomiany B, Murty V, Zdebska E, Slomiany A, Gwozdzinski K, Mandel I (1986) Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man. Arch Oral Biol 31:187–191PubMedCrossRefGoogle Scholar
  12. 12.
    Kensche A, Reich M, Kümmerer K, Hannig M, Hannig C (2012) Lipids in preventive dentistry. Clin Oral Investig. doi:10.1007/s00784-012-0835-9 Google Scholar
  13. 13.
    Gibbons RJ, Etherden I (1983) Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles. Infect Immun 41:1190–1196PubMedGoogle Scholar
  14. 14.
    Quirynen M, Marechal M, Busscher H, Weerkamp A, Arends J, Darius P, van Steenberghe D (1989) The influence of surface free-energy on planimetric plaque growth in man. J Dent Res 68:796–799PubMedCrossRefGoogle Scholar
  15. 15.
    Busscher HJ, van der Mei HC (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11:24–32PubMedCrossRefGoogle Scholar
  16. 16.
    Skjørland KK, Rykke M, Sønju T (1995) Rate of pellicle formation in vivo. Acta Odontol Scand 53:358–362PubMedCrossRefGoogle Scholar
  17. 17.
    Hannig M (1999) Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig 3:88–95PubMedCrossRefGoogle Scholar
  18. 18.
    Hannig M, Khanafer AK, Hoth-Hannig W, Al-Marrawi F, Acil Y (2005) Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin Oral Investig 9:30–37PubMedCrossRefGoogle Scholar
  19. 19.
    Van der Mei HC, White DJ, Kamminga-Rasker HJ, Knight J, Baig AA, Smit J, Busscher HJ (2002) Influence of dentifrices and dietary components in saliva on wettability of pellicle-coated enamel in vitro and in vivo. Eur J Oral Sci 110:434–438PubMedCrossRefGoogle Scholar
  20. 20.
    Carlén A, Rüdiger SG, Loggner I, Olsson J (2003) Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. Oral Microbiol Immunol 18:203–207PubMedCrossRefGoogle Scholar
  21. 21.
    Hannig C, Wagenschwanz C, Pötschke S, Kümmerer K, Kensche A, Hoth-Hannig W, Hannig M (2012) Effect of safflower oil on the protective properties of the in situ formed salivary pellicle. Caries Res 46:496–506PubMedCrossRefGoogle Scholar
  22. 22.
    Hara AT, Ando M, González-Cabezas C, Cury JA, Serra MC, Zero DT (2006) Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res 85:612–616PubMedCrossRefGoogle Scholar
  23. 23.
    Deimling D, Hannig C, Hoth-Hannig W, Schmitz P, Schulte Mönting J, Hannig M (2007) Non-destructive visualisation of protective proteins in the in situ pellicle. Clin Oral Investig 11:211–216PubMedCrossRefGoogle Scholar
  24. 24.
    Murty V, Slomiany BL, Zdebska E, Gwozdzinski K, Slomiany A, Mandel ID (1987) Lipids of salivary pellicle and their effect on cariogenic acid diffusion. Ann NY Acad Sci 494:237–239CrossRefGoogle Scholar
  25. 25.
    Slomiany B, Murty V, Mandel I, Sengupta S, Slomiany A (1990) Effect of lipids on the lactic acid retardation capacity of tooth enamel and cementum pellicles formed in vitro from saliva of caries-resistant and caries-susceptible human adults. Arch Oral Biol 35:175–180PubMedCrossRefGoogle Scholar
  26. 26.
    Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B (2003) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301:406–410PubMedCrossRefGoogle Scholar
  27. 27.
    Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140:903–912PubMedCrossRefGoogle Scholar
  28. 28.
    Reich M, Hannig C, Al-Ahmad A, Bolek R, Kümmerer K (2012) A comprehensive method for determination of fatty acids in the initial oral biofilm (pellicle). J Lipid Res 53:2226–2230PubMedCrossRefGoogle Scholar
  29. 29.
    Hannig C, Kirsch J, Al-Ahmad A, Kensche A, Hannig M, Kümmerer K (2013) Do edible oils reduce bacterial colonization of enamel in situ? Clin Oral Investig 17:649–658PubMedCrossRefGoogle Scholar
  30. 30.
    Thurnhofer S, Vetter W (2005) A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J Agric Food Chem 53:8896–8903PubMedCrossRefGoogle Scholar
  31. 31.
    Nakamichi I, Iwaku M, Fusayama T (1983) Bovine teeth as possible substitutes in the adhesion test. J Dent Res 62:1076–1081PubMedCrossRefGoogle Scholar
  32. 32.
    Wegehaupt F, Gries D, Wiegand A, Attin T (2008) Is bovine dentine an appropriate substitute for human dentine in erosion/abrasion tests? J Oral Rehabil 35:390–394PubMedCrossRefGoogle Scholar
  33. 33.
    Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610PubMedCrossRefGoogle Scholar
  34. 34.
    Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111PubMedCrossRefGoogle Scholar
  35. 35.
    Al-Ahmad A, Follo M, Selzer AC, Hellwig E, Hannig M, Hannig C (2009) Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol 58:1359–1366PubMedCrossRefGoogle Scholar
  36. 36.
    Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52:1048–1056PubMedCrossRefGoogle Scholar
  37. 37.
    Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13PubMedCrossRefGoogle Scholar
  38. 38.
    Bennick A, Chau G, Goodlin R, Abrams S, Tustian D, Madapallimattam G (1983) The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after adsorption to the human enamel surface. Arch Oral Biol 28:19–27PubMedCrossRefGoogle Scholar
  39. 39.
    Rykke M, Sønju T, Rølla G (1990) Interindividual and longitudinal studies of amino acid composition of pellicle collected in vivo. Eur J Oral Sci 98:129–134CrossRefGoogle Scholar
  40. 40.
    Actis AB, Perovic NR, Defago D, Beccacece C, Eynard A (2005) Fatty acid profile of human saliva: a possible indicator of dietary fat intake. Arch Oral Biol 50:1–6PubMedCrossRefGoogle Scholar
  41. 41.
    Kulkarni BV, Wood KV, Mattes RD (2012) Quantitative and qualitative analyses of human salivary NEFA with gas-chromatography and mass spectrometry. Front Physiol. doi:10.3389/fphys.2012.00328
  42. 42.
    Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG (2003) Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem 278:5300–5308PubMedCrossRefGoogle Scholar
  43. 43.
    Wiegand A, Gutsche M, Attin T (2007) Effect of olive oil and an olive-oil-containing fluoridated mouthrinse on enamel and dentin erosion. Acta Odontol Scand 65:357–361PubMedCrossRefGoogle Scholar
  44. 44.
    Asokan S, Rathan J, Muthu MS, Rathna PV, Emmadi P, Chamundeswari R (2008) Effect of oil pulling on Streptococcus mutans count in plaque and saliva using Dentocult SM Strip mutans test: a randomized, controlled, triple-blind study. J Indian Soc Pedod Prev Dent 26:12–17PubMedCrossRefGoogle Scholar
  45. 45.
    Asokan S, Emmadi P, Chamundeswari R (2009) Effect of oil pulling on plaque induced gingivitis: a randomized, controlled, triple-blind study. Indian J Dent Res 20:47–51PubMedCrossRefGoogle Scholar
  46. 46.
    Asokan S, Rathinasamy TK, Inbamani N, Menon T, Kumar SS, Emmadi P, Raghuraman R (2011) Mechanism of oil-pulling therapy-in vitro study. Indian J Dent Res 22:34–37PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  • Marco Reich
    • 1
  • Klaus Kümmerer
    • 1
  • Ali Al-Ahmad
    • 2
  • Christian Hannig
    • 3
  1. 1.Faculty of Sustainability, Institute of Sustainable and Environmental ChemistryLeuphana University LüneburgLüneburgGermany
  2. 2.Department of Operative Dentistry and PeriodontologyAlbert-Ludwigs Universität FreiburgFreiburgGermany
  3. 3.Faculty of Medicine Carl Gustav Carus, Clinic of Operative DentistryTechnische Universität DresdenDresdenGermany

Personalised recommendations