, Volume 48, Issue 9, pp 889–897 | Cite as

The Effectiveness of Fish Oil Supplementation in Asthmatic Rats is Limited by an Inefficient Action on ASM Function

  • D. T. S. Z. Miranda
  • A. L. Zanatta
  • B. C. L. Dias
  • R. T. H. Fogaça
  • J. B. B. Maurer
  • L. Donatti
  • P. C. Calder
  • A. Nishiyama
Original Article


Episodes of acute exacerbation are the major clinical feature of asthma and therefore represent an important focus for developing novel therapies for this disease. There are many reports that the n-3 fatty acids found in fish oil exert anti-inflammatory effects, but there are few studies of the action of fish oil on airway smooth muscle (ASM) function. In the present investigation, we evaluated the effect of fish oil supplementation on smooth muscle force of contraction in ovalbumin-induced asthmatic Wistar rats, and its consequences on static lung compliance, mucus production, leukocyte chemotaxis and production of proinflammatory cytokines. Fish oil supplementation suppressed the infiltration of inflammatory cells into the lung in asthmatic animals (2.04 ± 0.19 × 106 cells vs. 3.33 ± 0.43 × 106 cells in the control asthmatic group; P < 0.05). Static lung compliance increased with fish oil supplementation in asthmatic rats (0.640 ± 0.053 mL/cm H2O vs. 0.399 ± 0.043 mL/cm H2O; P < 0.05). However, fish oil did not prevent asthma-associated lung eosinophilia and did not affect the concentrations of tumor necrosis factor-α and interleukin-1β in lung tissue or the proportion of the airways obliterated with mucus. Fish oil had no effect on the force of contraction in asthmatic rats in response to acetylcholine (3.026 ± 0.274 mN vs. 2.813 ± 0.364 mN in the control asthmatic group). In conclusion, although fish oil exerts some benefits in this model of asthma, its effectiveness appears to be limited by an inefficient action on airway smooth muscle function.


Fish oil n-3 Fatty acids Asthma Inflammation Airway smooth muscle Cytokine 



Asthmatic group




Asthmatic fish oil group


Airway internal area


Airway outer muscle area


Airway outer area


Airway smooth muscle


Bronchoalveolar lavage fluid


Control group


Fish oil group


Interleukin 1β






Phosphate-buffed saline


Airway internal perimeter


Airway outer muscle perimeter


Airway outer perimeter


Polyunsaturated fatty acid(s)


Standard error of the mean


Tumor necrosis factor-α


Inner wall area


Adventitial wall area


Total wall area


  1. 1.
    Calder PC (2006) N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83:1505S–15119SPubMedGoogle Scholar
  2. 2.
    Calder PC (2012) Long-chain fatty acids and inflammation. Proc Nutr Soc 71:284–289PubMedCrossRefGoogle Scholar
  3. 3.
    Calder PC (2011) Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol 668:S50–S58PubMedCrossRefGoogle Scholar
  4. 4.
    Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Brit J Clin Pharmacol 75:645–662Google Scholar
  5. 5.
    Thien FCK, Woods R, De Luca S, Abramson MJ (2002) Dietary marine fatty acids (fish oil) for asthma in adults and children. Cochrane Database Syst Rev 2:CD001283Google Scholar
  6. 6.
    Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH (2002) Asthma: an epidemic of dysregulated immunity. Nat Immunol 3:715–720PubMedCrossRefGoogle Scholar
  7. 7.
    Dougherty RH, Fahy JV (2009) Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin Exp Immunol 39:193–202Google Scholar
  8. 8.
    Black JL, Panettieri RA Jr, Banerjee A, Berger P (2012) Airway smooth muscle in asthma—just a target for bronchodilation? Clin Chest Med 33:543–558PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenwasser LJ (1998) Biologic activities of IL-1 and its role in human disease. J Allergy Clin Immunol 102:344–350PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Y, Xu CB, Cardell LO (2009) Long-term exposure to IL-1β enhances TOLL-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness. Eur Cytokine Netw 20:148–156PubMedGoogle Scholar
  11. 11.
    Trifilieff A, Walker C, Keller T, Kottirsch G, Neumann U (2002) Pharmacological profile of PKF242-484 and PKF241-466, novel dual inhibitors of TNF-α converting enzyme and matrix metalloproteinases, in models of airway inflammation. Br J Pharmacol 135:1655–1664PubMedCrossRefGoogle Scholar
  12. 12.
    Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS (2007) IL-17 enhances IL-1β-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292:L1023–L1029PubMedCrossRefGoogle Scholar
  13. 13.
    Chai OH, Han EH, Lee HK, Song CH (2011) Mast cells play a key role in Th2 cytokine-dependent asthma model through production of adhesion molecules by liberation of TNF-α. Exp Mol Med 43:35–43PubMedCrossRefGoogle Scholar
  14. 14.
    Yamazaki RK, Brito GAP, Coelho I, Pequito DCT, Yamaguchi AA, Borghetti G, Schiessel DL, Kryczyk M, Machado J, Rocha RER, Aikawa J, Iagher F, Naliwaiko K, Tanhoffer RA, Nunes EA, Fernandes LC (2011) Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats. Lipids Health Dis 10:66–72PubMedCrossRefGoogle Scholar
  15. 15.
    Folador A, de Lima-Salgado TM, Hirabara SM, Aikawa J, Yamazaki RK, Martins E, Oliveira HHP, Pizatto N, Kanunfre CC, Peres CM, Fernandes LC, Curi R (2009) Effect of fish oil supplementation for two generations on changes of lymphocyte function induced by Walker 256 cancer cachexia in rats. Nutr Canc 61:670–679CrossRefGoogle Scholar
  16. 16.
    Mund RC, Pizato N, Bonatto S, Nunes EA, Vicenzi T, Tanhoffer R, Oliveira HHP, Curi C, Calder PC, Fernandes LC (2007) Decreased tumor growth in Walker 256 tumor-bearing rats chronically supplemented with fish oil involves COX-2 and PGE2 reduction associated with apoptosis and increased peroxidation. Prostagland Leukotr Essent Fatty Acids 76:113–120CrossRefGoogle Scholar
  17. 17.
    Belo SRB, Iagher F, Bonatto SJ, Naliwaiko K, Calder PC, Nunes EA, Fernandes LC (2010) Walker-256 tumor growth is inhibited by the independent or associative chronic ingestion of shark liver and fish oil: a response linked by the increment of peritoneal macrophages nitrite production in Wistar rats. Nutr Res 30:770–776PubMedCrossRefGoogle Scholar
  18. 18.
    Yin H, Liu W, Goleniewsk K, Porter NA, Morrow JD, Peebles RS Jr (2009) Dietary supplementation of ω-3 fatty acid—containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation. Free Radic Biol Med 47:622–628PubMedCrossRefGoogle Scholar
  19. 19.
    Yim PD, Gallos G, Xu D, Zhang Y, Emala CW (2011) Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle. FASEB J 25:1706–1717PubMedCrossRefGoogle Scholar
  20. 20.
    Sasaki F, Saitoh Y, Verburgt L, Okazawa M (1996) Airway wall dimensions during carbachol-induced bronchoconstriction in rabbits. J Appl Physiol 81:1578–1583PubMedGoogle Scholar
  21. 21.
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360:973–984PubMedCrossRefGoogle Scholar
  22. 22.
    Tian L, Li W, Wang J, Zhang Y, Zheng Y, Qi H, Guo X, Zhang Y, Ma D, Shen H, Wang Y (2011) The CKLF1-C19 peptide attenuates allergic lung inflammation by inhibiting CCR3- and CCR4-mediated chemotaxis in a mouse model of asthma. Allergy 66:287–297PubMedCrossRefGoogle Scholar
  23. 23.
    Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374PubMedCrossRefGoogle Scholar
  24. 24.
    Tull SP, Yates CM, Maskrey BH, O’Donnell VB, Madden J, Grimble RF, Calder PC, Nash GB, Rainger GE (2009) Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLoS Biol 7:e1000177PubMedCrossRefGoogle Scholar
  25. 25.
    Yang L, Cohn L, Zhang DH, Homer R, Ray A, Ray P (1998) Essential role of nuclear factor κB in the induction of eosinophilia in allergic airway inflammation. J Exp Med 188:1739–1750PubMedCrossRefGoogle Scholar
  26. 26.
    Wardlaw AJ (1999) Molecular basis for selective eosinophil trafficking in asthma: a multistep paradigm. J Allergy Clin Immunol 104:917–926PubMedCrossRefGoogle Scholar
  27. 27.
    Sanmugalingham D, De Vries E, Gauntlett R, Symon FA, Bradding P, Wardlaw AJ (2000) Interleukin-5 enhances eosinophil adhesion to bronchial epithelial cells. Clin and Experim Allergy 30:255–263CrossRefGoogle Scholar
  28. 28.
    Jacobsen EA, Helmers RA, Lee JJ, Lee NA (2012) The expanding role(s) of eosinophils in health and disease. Blood 120:1–33CrossRefGoogle Scholar
  29. 29.
    Fryer AD, Jacoby DB (1998) Muscarinic receptors and control of airway smooth muscle. Am J Respir Crit Care Med 158:S154–S160PubMedCrossRefGoogle Scholar
  30. 30.
    Verbout NG, Jacoby DB, Gleich GJ, Fryer AD (2009) Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor. Am J Physiol Lung Cell Mol Physiol 297:L228–L237PubMedCrossRefGoogle Scholar
  31. 31.
    Parris JRM, Cobban HJ, Littlejohn AF, MacEwan DJ, Nixon GF (1999) Tumor necrosis factor-α activates a calcium sensitization pathway in guinea-pig bronchial smooth muscle. J Physiol 518:561–569PubMedCrossRefGoogle Scholar
  32. 32.
    Morin C, Fortin S, Cantin AM, Rousseau E (2011) Docosahexaenoic acid derivative prevents inflammation and hyperreactivity in lung: implication of PKC-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17 kD in asthma. Am J Respir Cell Mol Biol 45:366–375PubMedCrossRefGoogle Scholar
  33. 33.
    Senouvo FY, Tabet Y, Morin C, Albadine R, Sirois C, Rousseau E (2011) Improved bioavailability of epoxyeicosatrienoic acids reduces TP-receptor agonist-induced tension in human bronchi. Am J Physiol Lung Cell Mol Physiol 301:L675–L682PubMedCrossRefGoogle Scholar
  34. 34.
    Jo T, Iida H, Kishida S, Imuta H, Oonuma H, Nagata T, Hara H, Iwasawa K, Soma M, Sato Y, Nagase T, Nagai R, Nakajima T (2005) Acute and chronic effects of eicosapentaenoic acid on voltage-gated sodium channel expressed in cultured human bronchial smooth muscle cells. Biochem Biophys Res Commun 331:1452–1459PubMedCrossRefGoogle Scholar
  35. 35.
    Solway J, Fredberg JJ (1997) Perhaps airway smooth muscle dysfunction contributes to asthmatic bronchial hyperresponsiveness after all. Am J Respir Cell Mol Biol 17:144–146PubMedCrossRefGoogle Scholar
  36. 36.
    Gallos G, Gleason NR, Zhang Y, Pak SW, Sonett JR, Yang J, Emala CW (2008) Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation. Am J Physiol Lung Cell Mol Physiol 295:L1040–L1047PubMedCrossRefGoogle Scholar
  37. 37.
    Cooper CB, Boscardin WJ, Colthurst JR, Kleerup EC (2009) Treatment of mild persistent asthma by cutaneous electronic stimulation. Eur Respir J 34:515–517PubMedCrossRefGoogle Scholar
  38. 38.
    Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167:1360–1368PubMedCrossRefGoogle Scholar
  39. 39.
    Shardonofsky FR, Capetanaki Y, Boriek AM (2006) Desmin modulates lung elastic recoil and airway responsiveness. Am J Physiol Lung Cell Mol Physiol 290:L890–L896PubMedCrossRefGoogle Scholar
  40. 40.
    Pellegrino R, Pompilio P, Quaranta M, Aliverti A, Kayser B, Miserocchi G, Fasano V, Cogo A, Milanese M, Cornara G, Brusasco V, Dellacà R (2009) Airway responses to methacholine and exercise at high altitude in healthy lowlanders. J Appl Physiol 108:256–265PubMedCrossRefGoogle Scholar
  41. 41.
    Raqeeb A, Jiao Y, Syyong HT, Paré PD, Seow CY (2012) Regulatable stiffness in relaxed airway smooth muscle: a target for asthma treatment? J Appl Physiol 112:337–346PubMedCrossRefGoogle Scholar
  42. 42.
    Mitzner W, Blosser S, Yager D, Wagner E (1992) Effect of bronchial smooth muscle contraction on lung compliance. J Appl Physiol 72:158–167PubMedCrossRefGoogle Scholar
  43. 43.
    Rubin BK (2010) Air and soul: the science and application of aerosol therapy. Respir Care 55:911–921PubMedGoogle Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  • D. T. S. Z. Miranda
    • 1
  • A. L. Zanatta
    • 1
  • B. C. L. Dias
    • 1
  • R. T. H. Fogaça
    • 1
  • J. B. B. Maurer
    • 2
  • L. Donatti
    • 3
  • P. C. Calder
    • 4
    • 5
  • A. Nishiyama
    • 1
  1. 1.Departamento de Fisiologia, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de Bioquímica, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Departamento de Biologia Celular, Centro PolitécnicoUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Human Development & Health Academic Unit, Faculty of Medicine, Southampton General HospitalUniversity of SouthamptonSouthamptonUK
  5. 5.College of Applied Medical SciencesKing Saudi UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations