, Volume 48, Issue 5, pp 457–467

Up-Regulation of Stearoyl-CoA Desaturase 1 Increases Liver MUFA Content in Obese Zucker but Not Goto-Kakizaki Rats

  • Minako Karahashi
  • Fumiko Ishii
  • Tohru Yamazaki
  • Koichi Imai
  • Atsushi Mitsumoto
  • Yoichi Kawashima
  • Naomi Kudo
Original Article


The Goto-Kakizaki (GK) rat is an animal model for spontaneous-onset, non-obese type 2 diabetes. Despite abundant evidence about disorders in metabolism, little information is available about fatty acid metabolism in the liver of GK rats. This study aimed to investigate the characteristics of the fatty acid profile, particularly MUFA, and the mechanism underlying the alterations in fatty acid profiles in the liver of GK rats. The activities of enzymes that participate in the biosynthesis of MUFA, expressions of genes encoding these enzymes, and the fatty acid profile in the liver were compared with those of obese Zucker (fa/fa) (ZF) rats, which are obese and non-diabetic. Stearoyl-CoA desaturase (SCD) activity and SCD1 gene expression were considerably up-regulated in GK rats, and these levels were largely comparable to those in ZF rats. However, the proportions and contents of oleic acid and palmitoleic acid were very low considering the highly elevated activity of SCD in the liver of GK rats, when compared with ZF rats. Palmitoyl-CoA chain elongation (PCE) activity and fatty acid elongase (Elovl6) gene expression were markedly up-regulated in ZF rats, whereas PCE activity was up-regulated much less and Elovl6 gene expression was unchanged in GK rats. These results suggest the possibility that up-regulation of gene expression of Elovl6 along with SCD1 is indispensable to elevate the proportions and contents of oleic acid in the liver.


Desaturase Elongase Oleic acid Palmitoleic acid Goto-Kakizaki rat Obese Zucker (fa/fa) rat 



Ethylenediaminetetraacetic acid


Fatty acid elongase


Endoplasmic reticulum


Fatty acid desaturase




Nicotinamide adenine dinucleotide reduced


Nicotinamide adenine dinucleotide phosphate reduced


Palmitoyl-CoA chain elongation


Palmitoleoyl-CoA chain elongation


Stearoyl-CoA desaturase


Spontaneously hypertensive


SHR/NDmcr-cp (cp/cp)


Sterol regulatory element binding protein-1c


Streptozotocin-induced diabetic


Very low-density lipoprotein


Wistar rats, a control corresponding to GK rats


Obese Zucker (fa/fa)


Lean Zucker (?/+)


  1. 1.
    Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104PubMedCrossRefGoogle Scholar
  2. 2.
    Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care 14:115–120PubMedCrossRefGoogle Scholar
  3. 3.
    Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214PubMedCrossRefGoogle Scholar
  4. 4.
    Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB (2005) Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J Lipid Res 46:706–715PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair M, Peters JM, Busik J, Olson LK, Jump DB (2006) Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 47:2028–2041PubMedCrossRefGoogle Scholar
  6. 6.
    Kudo N, Toyama T, Mitsumoto A, Kawashima Y (2003) Regulation by carbohydrate and clofibric acid of palmitoyl-CoA chain elongation in the liver of rats. Lipids 38:531–537PubMedCrossRefGoogle Scholar
  7. 7.
    Miyazaki M, Kim Y-C, Gray-Keller MP, Attie AD, Ntambi JM (2000) The Biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275:30132–30138PubMedCrossRefGoogle Scholar
  8. 8.
    Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275–E281PubMedCrossRefGoogle Scholar
  9. 9.
    Wei Y, Wang D, Gentile CL, Pagliassotti MJ (2009) Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells. Mol Cell Biochem 331:31–40PubMedCrossRefGoogle Scholar
  10. 10.
    Ariyama H, Kono N, Matsuda S, Inoue T, Arai H (2010) Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem 285:22027–22035PubMedCrossRefGoogle Scholar
  11. 11.
    Dixon JL, Furukawa S, Ginsberg HN (1991) Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J Biol Chem 266:5080–5086PubMedGoogle Scholar
  12. 12.
    Legrand P, Catheline D, Fichot M-C, Lemarchal P (1997) Inhibiting Δ9-desaturase activity impairs triacylglycerol secretion in cultured chicken hepatocytes. J Nutr 127:249–256PubMedGoogle Scholar
  13. 13.
    Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944PubMedCrossRefGoogle Scholar
  14. 14.
    Gutiérrez-Juárez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP, Rossetti L (2006) Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest 116:1686–1695PubMedCrossRefGoogle Scholar
  15. 15.
    Kawashima Y, Kozuka H (1982) Increased activity of stearoyl-CoA desaturation in liver from rat fed clofibric acid. Biochim Biophys Acta 713:622–628PubMedCrossRefGoogle Scholar
  16. 16.
    Ge F, Zhou S, Hu C, Lobdell H 4th, Berk PD (2010) Insulin- and leptin-regulated fatty acid uptake plays a key causal role in hepatic steatosis in mice with intact leptin signaling but not in ob/ob or db/db mice. Am J Physiol Gastrointest Liver Physiol 299:G855–G866PubMedCrossRefGoogle Scholar
  17. 17.
    Toyama T, Kudo N, Hibino Y, Mitsumoto A, Nishikawa M, Kawashima Y (2007) Effects of pioglitazone on stearoyl-CoA desaturase in obese Zucker fa/fa rats. J Pharmacol Sci 104:137–145PubMedCrossRefGoogle Scholar
  18. 18.
    Tanaka S, Yagi Y, Yamazaki T, Mitsumoto A, Kobayashi D, Kudo N, Kawashima Y (2012) Characterization of fatty acid profile in the liver of SHR/NDmcr-cp (cp/cp) rats, a model of the metabolic syndrome. Biol Pharm Bull 35:184–191PubMedCrossRefGoogle Scholar
  19. 19.
    Li M, Fu W, Li X-A (2010) Differential fatty acid profile in adipose and non-adipose tissues in obese mice. Int J Clin Exp Med 3:303–307PubMedCrossRefGoogle Scholar
  20. 20.
    Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, More KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495PubMedCrossRefGoogle Scholar
  21. 21.
    Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CT, Hess JF (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19PubMedCrossRefGoogle Scholar
  22. 22.
    Kawai K, Sakairi T, Harada S, Shinozuka J, Ide M, Sato H, Tanaka M, Toriumi W, Kume E (2012) Diet modification and its influence on metabolic and related pathological alterations in the SHR/NDmcr-cp rat, an animal model of the metabolic syndrome. Exp Toxicol Pathol 64:333–338PubMedCrossRefGoogle Scholar
  23. 23.
    Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85Google Scholar
  24. 24.
    Portha B, Serradas P, Bailbé D, Suzuki K, Goto Y, Giroix M-H (1991) β-Cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes 40:486–491PubMedCrossRefGoogle Scholar
  25. 25.
    Portha B (2005) Programmed disorders of β-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diabetes Metab Res Rev 21:495–504PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone H, Toyoshima H, Osuga J, Yamada N (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13:1193–1202PubMedCrossRefGoogle Scholar
  27. 27.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  28. 28.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  29. 29.
    Yamazaki T, Wakabayashi M, Ikeda E, Tanaka S, Sakamoto T, Mitsumoto A, Kudo N, Kawashima Y (2012) Induction of 1-acylglycerophosphocholine acyltransferase genes by fibrates in the liver of rats. Biol Pharm Bull 35:1509–1515PubMedCrossRefGoogle Scholar
  30. 30.
    Kawashima Y, Kozuka H (1985) Regulation of palmitoyl-CoA chain elongation and linoleoyl-CoA chain elongation in rat liver microsomes and the differential effects of peroxisome proliferators, insulin and thyroid hormone. Biochim Biophys Acta 834:118–123PubMedCrossRefGoogle Scholar
  31. 31.
    Fèvre C, Bellenger S, Pierre A-S, Minville M, Bellenger J, Gresti J, Rialland M, Narce M, Tessier C (2011) The metabolic cascade leading to eicosanoid precursors—desaturases, elongases, and phospholipases A2—is altered in Zucker fatty rats. Biochim Biophys Acta 1811:409–417PubMedCrossRefGoogle Scholar
  32. 32.
    Yamazaki T, Okada H, Sakamoto T, Sunaga K, Tsuda T, Mitsumoto A, Kudo N, Kawashima Y (2012) Differential induction of stearoyl-CoA desaturase 1 and 2 genes by fibrates in the liver of rats. Biol Pharm Bull 35:116–120PubMedCrossRefGoogle Scholar
  33. 33.
    Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK (2010) Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res 51:1871–1877PubMedCrossRefGoogle Scholar
  34. 34.
    Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496PubMedCrossRefGoogle Scholar
  35. 35.
    Matsuzaka T, Shimano H (2009) Elovl6: a new player in fatty acid metabolism and insulin sensitivity. J Mol Med 87:379–384PubMedCrossRefGoogle Scholar
  36. 36.
    Guillou H, Zadravec D, Martin PGP, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49:186–199PubMedCrossRefGoogle Scholar
  37. 37.
    Marcel YL, Christiansen K, Holman RT (1968) The preferred metabolic pathway from linoleic acid to arachidonic acid in vitro. Biochim Biophys Acta 164:25–34PubMedCrossRefGoogle Scholar
  38. 38.
    Blond J-P, Henchiri C, Bézard J (1989) Δ6 and Δ5 desaturase activities in liver from obese Zucker rats at different ages. Lipids 24:389–395PubMedCrossRefGoogle Scholar
  39. 39.
    Terrettaz J, Jeanrenaud B (1983) In vivo hepatic and peripheral insulin resistance in genetically obese (fa/fa) rats. Endocrinology 112:1346–1351PubMedCrossRefGoogle Scholar
  40. 40.
    Gary-Bobo M, Elachouri G, Gallas JF, Janiak P, Marini P, Ravinet-Trillou C, Chabbert M, Cruccioli N, Pfersdorff C, Roque C, Arnone M, Croci T, Soubrié P, Oury-Donat F, Maffrand JP, Scatton B, Lacheretz F, Le Fur G, Herbert JM, Bensaid M (2007) Rimonabant reduces obesity-associated hepatic steatosis and features of metabolic syndrome in obese Zucker fa/fa rats. Hepatology 46:122–129PubMedCrossRefGoogle Scholar
  41. 41.
    Sparks JD, Sparks CE (1994) Obese Zucker (fa/fa) rats are resistant to insulin’s inhibitory effect on hepatic apo B secretion. Biochem Biophys Res Commun 205:417–422PubMedCrossRefGoogle Scholar
  42. 42.
    Buqué X, Martínez MJ, Cano A, Miquilena-Colina ME, García-Monzón C, Aspichueta P, Ochoa B (2010) A subset of dysregulated metabolic and survival genes is associated with severity of hepatic steatosis in obese Zucker rats. J Lipid Res 51:500–513PubMedCrossRefGoogle Scholar
  43. 43.
    Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRefGoogle Scholar
  44. 44.
    Ota T, Gayet C, Ginsberg HN (2008) Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118:316–332PubMedCrossRefGoogle Scholar
  45. 45.
    Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 1801:338–349PubMedCrossRefGoogle Scholar
  46. 46.
    Alkhouri N, Dixon LJ, Feldstein AE (2009) Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol 3:445–451PubMedCrossRefGoogle Scholar
  47. 47.
    Malhi H, Bronk SF, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281:12093–12101PubMedCrossRefGoogle Scholar
  48. 48.
    Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082PubMedCrossRefGoogle Scholar
  49. 49.
    Stefan N, Peter A, Cegan A, Staiger H, Machann J, Schick F, Claussen CD, Fritsche A, Häring H-U, Schleicher E (2008) Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia 51:648–656PubMedCrossRefGoogle Scholar
  50. 50.
    Li ZZ, Berk M, McIntyre TM, Feldstein AE (2009) Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease. Role of stearoyl-CoA desaturase. J Biol Chem 284:5637–5644PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Takahashi A, Sone H, Osuga J, Gotoda T, Ishibashi S, Yamada N (2002) Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of Liver X receptor (LXR) binding to LXR response elements. J Biol Chem 277:1705–1711PubMedCrossRefGoogle Scholar
  52. 52.
    Lee JN, Zhang X, Feramisco JD, Gong Y, Ye J (2008) Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. J Biol Chem 283:33772–33783PubMedCrossRefGoogle Scholar
  53. 53.
    Bisbis S, Bailbe D, Tormo M-A, Picarel-Blanchot F, Derouet M, Simon J, Portha B (1993) Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver. Am J Physiol Endocrinol Metab 265:E807–E813Google Scholar
  54. 54.
    Yamane M, Jiao S (Sho N), Kihara S, Shimomura I, Yanagi K, Tokunaga K, Kawata S, Odaka H, Ikeda H, Yamashita S, Kameda-Takemura K, Matsuzawa Y (1995) Increased proportion of plasma apoB-48 to apoB-100 in non-insulin-dependent diabetic rats: contribution of enhanced apoB mRNA editing in the liver. J Lipid Res 36:1676–1685PubMedGoogle Scholar
  55. 55.
    Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Ong KT, Woo SL, Walzem RL, Mashek DG, Dong H, Lu F, Wei L, Huo Y, Wu C (2012) Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS ONE 7:e39286PubMedCrossRefGoogle Scholar
  56. 56.
    Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S, Charlton MR, Gores GJ (2010) Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J Hepatol 52:586–593PubMedCrossRefGoogle Scholar
  57. 57.
    Kadotani A, Tsuchiya Y, Hatakeyama H, Katagiri H, Kanzaki M (2009) Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C2C12 myotubes. Am J Physiol Endocrinol Metab 297:E1291–E1303PubMedCrossRefGoogle Scholar
  58. 58.
    Tripathy S, Jump DB (2013) Elovl5 regulates the mTORC2-Akt-FOXO1 pathway by controlling hepatic cis-vaccenic acid synthesis in diet-induced obese mice. J Lipid Res 54:71–84PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  • Minako Karahashi
    • 1
  • Fumiko Ishii
    • 1
    • 4
  • Tohru Yamazaki
    • 1
  • Koichi Imai
    • 2
  • Atsushi Mitsumoto
    • 3
  • Yoichi Kawashima
    • 1
  • Naomi Kudo
    • 1
  1. 1.Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  2. 2.Saitama Prefectural Institute of Public HealthSakura-kuJapan
  3. 3.Faculty of Pharmaceutical SciencesJosai International UniversityToganeJapan
  4. 4.CREATE SDSAoba-ku, AokohamaJapan

Personalised recommendations