, Volume 47, Issue 7, pp 647–657 | Cite as

Trans Fatty Acids: Induction of a Pro-inflammatory Phenotype in Endothelial Cells

  • Kevin A. Harvey
  • Candace L. Walker
  • Zhidong Xu
  • Phillip Whitley
  • Rafat A. Siddiqui
Original Article


Epidemiological data have shown an association of the intake of industrial produced trans fatty acids (TFA) and sudden cardiac death. The present study examines the impact of elaidic acid (t18:1n-9) and linoelaidic acid (t18:2n-6) on the human aortic endothelial cell functional response. Trans fatty acids predominately incorporated into the phospholipid component while only a minute fraction of the total fatty acids (FA) incorporated into triacylglycerol. Trans fatty acids incorporated into the plasma membranes at the expense of the saturated-FA, stearic, palmitic, and to a lesser extent, myristic acid. Both t18:1n-9 and t18:2n-6 induced a pro-inflammatory response by elevating surface expression of intercellular adhesion molecule-1 (ICAM-1). Neither oleic nor linoleic evoked a pro-inflammatory phenotype under the maximal 50 µM treatments. Both TFA and stearic acid increased phosphorylation of the ICAM-1 transcriptional regulator, nuclear factor-κβ (NF-κβ), while oleic and linoleic acids did not appear to alter the phosphorylation status. Elaidic acid minimally affected endothelial cell growth, whereas linoelaidic acid completely inhibited growth at 100 µM and imparted limited cytotoxicity up to 300 µM. Stearic acid induced cytotoxicity at concentrations above 75 µM, while oleic and linoleic acids evoked gradual dose-dependent growth inhibition with cytotoxicity occurring only at linoleic acid concentrations greater than 200 µM. In conclusion, t18:1n-9 and t18:2n-6 fatty acids effectively incorporated into the phospholipid component of endothelial cells and subsequently induce a pro-inflammatory phenotype.


Trans fatty acids Endothelial cells Inflammation NFκB Lipid droplets 



Analysis of variance


Bicinchoninic acid


Bovine serum albumin


Coronary heart disease


Carbon dioxide


Endothelial basal medium


Endothelial cell(s)


Fatty acid(s)


Fetal bovine serum


Glyceraldehyde 3-phosphate dehydrogenase


Human aortic endothelial cell(s)


Human umbilical vein endothelial cell


Intercellular adhesion molecule-1


Industrially produced-trans fatty acid(s)


Nuclear factor-κβ






Ruminant produced-trans fatty acid(s)


Saturated fatty acid(s)


Trans ∆9-octadeca-monoenoic acid (elaidic acid)


Trans ∆9,12-octadeca-dienoic acid (linoelaidic acid)




Tris buffered saline-tween 20


Trans fatty acid(s)


Vascular cell adhesion molecule-1


  1. 1.
    Stender S, Astrup A, Dyerberg J (2008) Ruminant and industrially produced trans fatty acids: health aspects. Food Nutr Res 52. doi: 10.3402/fnr.v52i0.1651
  2. 2.
    Jakobsen MU, Bysted A, Andersen NL, Heitmann BL, Hartkopp HB, Leth T, Overvad K, Dyerberg J (2006) Intake of ruminant trans fatty acids in the Danish population aged 1–80 years. Eur J Clin Nutr 60:312–318PubMedCrossRefGoogle Scholar
  3. 3.
    Allison DB, Denke MA, Dietschy JM, Emken EA, Kris-Etherton P, Niclolosi RJ (1995) Trans fatty acids and coronary heart disease risk. Report of the expert panel on trans fatty acids and coronary heart disease. Am J Clin Nutr 62:655S–708SGoogle Scholar
  4. 4.
    Ratnayake WM, L’Abbe MR, Farnworth S, Dumais L, Gagnon C, Lampi B, Casey V, Mohottalage D, Rondeau I, Underhill L, Vigneault M, Lillycrop W, Meleta M, Wong LY, Ng T, Gao Y, Kwong K, Chalouh S, Pantazopoulos P, Gunaratna H, Rahardja A, Blagden R, Roscoe V, Krakalovich T, Neumann G, Lombaert GA (2009) Trans fatty acids: current contents in Canadian foods and estimated intake levels for the Canadian population. J AOAC Int 92:1258–1276PubMedGoogle Scholar
  5. 5.
    Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women(see comment). Lancet 341:581–585PubMedCrossRefGoogle Scholar
  6. 6.
    Pietinen P, Ascherio A, Korhonen P, Hartman AM, Willett WC, Albanes D, Virtamo J (1997) Intake of fatty acids and risk of coronary heart disease in a cohort of Finnish men. The alpha-tocopherol, beta-carotene cancer prevention study. Am J Epidemiol 145:876–887PubMedCrossRefGoogle Scholar
  7. 7.
    Ascherio A (2004) Trans fatty acids and coronary heart disease. Harvard School of Public Health 1–8Google Scholar
  8. 8.
    Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613PubMedCrossRefGoogle Scholar
  9. 9.
    Jakobsen MU, Overvad K, Dyerberg J, Heitmann BL (2008) Intake of ruminant trans fatty acids and risk of coronary heart disease. Int J Epidemiol 37:173–182PubMedCrossRefGoogle Scholar
  10. 10.
    Motard-Belanger A, Charest A, Grenier G, Paquin P, Chouinard Y, Lemieux S, Couture P, Lamarche B (2008) Study of the effect of trans fatty acids from ruminants on blood lipids and other risk factors for cardiovascular disease. Am J Clin Nutr 87:593–599PubMedGoogle Scholar
  11. 11.
    Mozaffarian D, Aro A, Willett WC (2009) Health effects of trans fatty acids: experimental and observational evidence. Eur J Clin Nutr 63(Suppl 2):S5–S21PubMedCrossRefGoogle Scholar
  12. 12.
    Bendsen NT, Stender S, Szecsi PB, Pedersen SB, Basu S, Hellgren LI, Newman JW, Larsen TM, Haugaard SB, Astrup A (2011) Effect of industrially produced trans fat on markers of systemic inflammation: evidence from a randomized trial in women. J Lipid Res 52:1821–1828PubMedCrossRefGoogle Scholar
  13. 13.
    Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287PubMedCrossRefGoogle Scholar
  14. 14.
    Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336PubMedCrossRefGoogle Scholar
  15. 15.
    Sheehan MT, Jensen MD (2000) Metabolic complications of obesity. Pathophysiologic considerations. Med Clin North Am 84:363–385PubMedCrossRefGoogle Scholar
  16. 16.
    Eckel RH, Barouch WW, Ershow AG (2002) Report of the National Heart, Lung, and Blood Institute–National Institute of Diabetes and Digestive and Kidney Diseases working group on the pathophysiology of obesity-associated cardiovascular disease. Circulation 105:2923–2928PubMedCrossRefGoogle Scholar
  17. 17.
    Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89:1425–1432PubMedCrossRefGoogle Scholar
  18. 18.
    Merchant AT, Kelemen LE, de Koning L, Lonn E, Vuksan V, Jacobs R, Davis B, Teo KK, Yusuf S, Anand SS (2008) Interrelation of saturated fat, trans fat, alcohol intake, and subclinical atherosclerosis. Am J Clin Nutr 87:168–174PubMedGoogle Scholar
  19. 19.
    Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, Rea TD, Kuller LH, Tracy RP, Siscovick DS (2006) Plasma phospholipid trans fatty acids, fatal ischemic heart disease, and sudden cardiac death in older adults: the cardiovascular health study. Circulation 114:209–215PubMedCrossRefGoogle Scholar
  20. 20.
    Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM, Hise M, Zaloga GP, Siddiqui RA (2010) Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res 51:3470–3480PubMedCrossRefGoogle Scholar
  21. 21.
    Harvey KA, Walker CL, Pavlina TM, Xu Z, Zaloga GP, Siddiqui RA (2010) Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin Nutr 29:492–500PubMedCrossRefGoogle Scholar
  22. 22.
    Roach C, Feller SE, Ward JA, Shaikh SR, Zerouga M, Stillwell W (2004) Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 43:6344–6351PubMedCrossRefGoogle Scholar
  23. 23.
    van Greevenbroek MM, Voorhout WF, Erkelens DW, van Meer G, de Bruin TW (1995) Palmitic acid and linoleic acid metabolism in Caco-2 cells: different triglyceride synthesis and lipoprotein secretion. J Lipid Res 36:13–24PubMedGoogle Scholar
  24. 24.
    Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509PubMedGoogle Scholar
  25. 25.
    Harvey KA, Arnold T, Rasool T, Antalis C, Miller SJ, Siddiqui RA (2008) Trans fatty acids induce pro-inflammatory responses and endothelial cell dysfunction. Br J Nutr 99:723–731PubMedGoogle Scholar
  26. 26.
    Siddiqui RA, Harvey KA, Ruzmetov N, Miller SJ, Zaloga GP (2009) n-3 fatty acids prevent whereas trans fatty acids induce vascular inflammation and sudden cardiac death. Br J Nutr 102:1811–1819PubMedCrossRefGoogle Scholar
  27. 27.
    Sanadgol N, Mostafaie A, Bahrami G, Mansouri K, Ghanbari F, Bidmeshkipour A (2010) Elaidic acid sustains LPS and TNF-alpha induced ICAM-1 and VCAM-I expression on human bone marrow endothelial cells (HBMEC). Clin Biochem 43:968–972PubMedCrossRefGoogle Scholar
  28. 28.
    Rezamand P, McGuire MA (2011) Effects of trans fatty acids on markers of inflammation in bovine mammary epithelial cells. J Dairy Sci 94:316–320PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ, Willett WC, Hu FB (2005) Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 135:562–566PubMedGoogle Scholar
  30. 30.
    Qiu B, Hu JN, Liu R, Fan YW, Li J, Li Y, Deng ZY (2011) The caspase pathway of elaidic acid (9t-C18:1)—induced apoptosis in human umbilical vein endothelial cells. Cell Biology International (in press)Google Scholar
  31. 31.
    Zapolska-Downar D, Kosmider A, Naruszewicz M (2005) Trans fatty acids induce apoptosis in human endothelial cells. J Physiol Pharmacol 56:611–625PubMedGoogle Scholar
  32. 32.
    Vesper HW, Kuiper HC, Mirel LB, Johnson CL, Pirkle JL (2012) Levels of plasma trans fatty acids in non-Hispanic white adults in the United States in 2000 and 2009. JAMA 307:562–563PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  • Kevin A. Harvey
    • 1
  • Candace L. Walker
    • 1
  • Zhidong Xu
    • 1
  • Phillip Whitley
    • 1
  • Rafat A. Siddiqui
    • 1
    • 2
    • 3
  1. 1.Cellular Biochemistry LaboratoryMethodist Research InstituteIndianapolisUSA
  2. 2.Department of MedicineIndiana University School of MedicineIndianapolisUSA
  3. 3.Indiana University Health–Methodist Hospital, Methodist Research InstituteIndianapolisUSA

Personalised recommendations