, Volume 47, Issue 2, pp 185–193 | Cite as

Steryl Glucoside and Acyl Steryl Glucoside Analysis of Arabidopsis Seeds by Electrospray Ionization Tandem Mass Spectrometry

  • Kathrin SchrickEmail author
  • Sunitha Shiva
  • James C. Arpin
  • Nicole Delimont
  • Giorgis Isaac
  • Pamela Tamura
  • Ruth Welti
Original Article


Establishment of sensitive methods for the detection of cellular sterols and their derivatives is a critical step in developing comprehensive lipidomics technology. We demonstrate that electrospray ionization tandem (triple quadrupole) mass spectrometry (ESI-MS/MS) is an efficient method for monitoring steryl glucosides (SG) and acyl steryl glucosides (ASG). Comparison of analysis of SG and ASG by ESI-MS/MS with analysis by gas chromatography with flame ionization detection (GC–FID) shows that the two methods yield similar molar compositions. These data demonstrate that ESI-MS/MS response per molar amount of sterol conjugate is similar among various molecular species of SG and ASG. Application of ESI-MS/MS to seed samples from wild-type Arabidopsis and a mutant deficient in two UDP-glucose:sterol glucosyltransferases, UGT80A2 and UGT80B1, revealed new details on the composition of sitosteryl, campesteryl and stigmasteryl glucosides and ASG. SG were decreased by 86% in the ugt80A2,B1 double mutant, compared to the wild-type, while ASG were reduced 96%. The results indicate that these glucosyltransferases account for much of the accumulation of the sterol conjugates in wild-type Arabidopsis seeds.


Steryl glucosides Acyl steryl glucosides Sterols Electrospray ionization tandem mass spectrometry Gas chromatography Arabidopsis thaliana UDP-glucose:sterol glucosyltransferase ugt80A2,B1, UGT80A2, UGT80B1 



Steryl glucosides


Acyl steryl glucosides


Electrospray ionization tandem (triple quadrupole) mass spectrometry


Gas chromatography


Flame ionization detection



K.S. was supported by National Research Initiative Competitive Grants Program grant no. 2007-35304-18453 from the United States Department of Agriculture National Institute of Food and Agriculture and by the National Science Foundation (MCB 0517758). Equipment acquisition and method development at the Kansas Lipidomics Research Center were funded by the National Science Foundation (EPS 0236913, MCB 0455318 and 0920663, DBI 0521587), Kansas Technology Enterprise Corporation, Kansas IDeA Network of Biomedical Research Excellence (K-INBRE) of National Institutes of Health (P20RR16475), and Kansas State University. This is contribution no. 11-374-J from the Kansas Agricultural Experiment Station.

Supplementary material

11745_2011_3602_MOESM1_ESM.doc (82 kb)
Supplementary material 2 (DOC 83 kb)
11745_2011_3602_MOESM2_ESM.doc (38 kb)
Supplementary material 3 (DOC 39 kb)


  1. 1.
    Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457PubMedCrossRefGoogle Scholar
  2. 2.
    Grandmougin-Ferjani A, Schuler-Muller I, Hartmann MA (1997) Sterol modulation of the plasma membrane H+-ATPase activity from corn roots reconstituted into soybean lipids. Plant Physiol 113:163–174PubMedGoogle Scholar
  3. 3.
    Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P, Hartmann MA (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphophatidylcholine bilayers. Proc Natl Acad Sci USA 88:6926–6930PubMedCrossRefGoogle Scholar
  4. 4.
    Asami T, Nakano T, Fujioka S (2005) Plant brassinosteroid hormones. Plant Horm 72:479–504CrossRefGoogle Scholar
  5. 5.
    Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704PubMedCrossRefGoogle Scholar
  6. 6.
    Grille S, Zaslawski A, Thiele S, Plat J, Warnecke D (2010) The functions of steryl glycosides come to those who wait: Recent advances in plants, fungi, bacteria and animals. Prog Lipid Res 49:262–288PubMedCrossRefGoogle Scholar
  7. 7.
    Kovganko NV, Kashkan ZN (1999) Sterol glycosides and acylglycosides. Chem Nat Compd 35:479–497CrossRefGoogle Scholar
  8. 8.
    Heinz E (1996) Plant glycolipids: structure, isolation and analysis. In: Christie WW (ed) Advances in lipid methodology—3. The Oily Press, Dundee, pp 211–332Google Scholar
  9. 9.
    Wojciechowski ZA (1991) Biochemistry of phytosterol conjugates. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists Society, Champaign, pp 361–395Google Scholar
  10. 10.
    Peng L, Kawagoe Y, Hogan P, Delmer D (2002) Sitosterol-beta-glucoside as a primer for cellulose synthesis in plants. Science 295:147–150PubMedCrossRefGoogle Scholar
  11. 11.
    Ury A, Benveniste P, Bouvier-Navé P (1989) Phospholipid-dependence of plant UDP-glucose sterol beta-d-glucosyl transferase: IV. Reconstitution into small unilamellar vesicles. Plant Physiol 91:567–573PubMedCrossRefGoogle Scholar
  12. 12.
    Warnecke DC, Baltrusch M, Buck F, Wolter FP, Heinz E (1997) UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli. Plant Mol Biol 35:597–603PubMedCrossRefGoogle Scholar
  13. 13.
    DeBolt S, Scheible WR, Schrick K, Auer M, Beisson F, Bischoff V, Bouvier-Navé P, Carroll A, Hematy K, Li Y, Milne J, Nair M, Schaller H, Zemla M, Somerville C (2009) Mutations in UDP-glucose:sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds. Plant Physiol 151:78–87PubMedCrossRefGoogle Scholar
  14. 14.
    Wenk MR (2010) Lipidomics: new tools and applications. Cell 143:888–895PubMedCrossRefGoogle Scholar
  15. 15.
    Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress response: role of phospholipase d alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002PubMedCrossRefGoogle Scholar
  16. 16.
    Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase d alpha1 knockout mutant. Phytochemistry 67:1907–1924PubMedCrossRefGoogle Scholar
  17. 17.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  18. 18.
    Rintoul DA, Chou SM, Silbert DF (1979) Physical characterization of sterol-depleted LM-cell plasma membranes. J Biol Chem 254:10070–10077PubMedGoogle Scholar
  19. 19.
    Zhou Z, Marepally SR, Nune DS, Pallakollu P, Ragan G, Roth MR, Wang L, Lushington GH, Visvanathan M, Welti R (2011) LipidomeDB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids 46:879–884Google Scholar
  20. 20.
    Liebisch G, Binder M, Shifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761:121–128PubMedCrossRefGoogle Scholar
  21. 21.
    Bush PB, Grunwald C (1972) Sterol changes during germination of Nicotiana tabacum seeds. Plant Physiol 50:69–72PubMedCrossRefGoogle Scholar
  22. 22.
    Wewer V, Dombrink I, Vom Dorp K, Dörmann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipids Res 52:1039–1054CrossRefGoogle Scholar

Copyright information

© AOCS 2011

Authors and Affiliations

  • Kathrin Schrick
    • 1
    Email author
  • Sunitha Shiva
    • 1
  • James C. Arpin
    • 1
  • Nicole Delimont
    • 1
  • Giorgis Isaac
    • 1
  • Pamela Tamura
    • 1
  • Ruth Welti
    • 1
  1. 1.Division of Biology116 Ackert Hall, Kansas State UniversityManhattanUSA

Personalised recommendations