Lipids

, Volume 46, Issue 7, pp 617–625

Aerobic Exercise Improves Reverse Cholesterol Transport in Cholesteryl Ester Transfer Protein Transgenic Mice

  • D. D. F. M. Rocco
  • L. S. Okuda
  • R. S. Pinto
  • F. D. Ferreira
  • S. K. Kubo
  • E. R. Nakandakare
  • E. C. R. Quintão
  • S. Catanozi
  • M. Passarelli
Original Article

Abstract

We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of 14C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [3H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [3H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [3H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.

Keywords

Atherosclerosis CETP HDL Physical exercise Cholesterol 

Abbreviations

ABC

Transporters ABCA-1 and ABCG-1

AcLDL

Acetylated LDL

Apo AI

Apolipoprotein AI

Apo E

Apolipoprotein E

B-E

Low density lipoprotein receptor

CETP

Cholesteryl ester transfer protein

CYP7A1

7 alpha hydroxylase

CYP27A

27 alpha hydroxylase

EC

Esterified cholesterol

EDTA-PBS

Ethylene diamine tetra acetic phosphate-buffered saline

FPLC

Fast protein liquid chromatography

HDL

High density lipoprotein

LCAT

Lecithin cholesterol acyltransferase

LDL

Low density lipoprotein

LRP

LDL-receptor related protein

LXR

Liver X receptor

LP

Lipoprotein

RCT

Reverse cholesterol transport

SR-BI

Scavenger receptor class B type I

VLDL

Very low density lipoprotein

References

  1. 1.
    Lee IM, Hsieh CC, Paffenbarger RS Jr (1995) Exercise intensity and longevity in men. The Harvard Alumni Study. JAMA 273:1179–1184PubMedCrossRefGoogle Scholar
  2. 2.
    Nordstrom CK, Dwyer KM, Merz NB, Shircore A, Dwyer JH (2003) Leisure time physical activity and early atherosclerosis: the Los Angeles atherosclerosis study. Am J Med 115:19–25PubMedCrossRefGoogle Scholar
  3. 3.
    Ramachandran S, Penumetcha M, Merchant NK, Santanam N, Rong R, Parthasarathy S (2005) Exercise reduces preexisting atherosclerotic lesions in LDL receptor knock out mice. Atherosclerosis 178:33–38PubMedCrossRefGoogle Scholar
  4. 4.
    Matsumoto Y, Adams V, Jacob S, Mangner N, Schuler G, Linke A (2010) Regular exercise training prevents aortic valve disease in low-density lipoprotein-receptor-deficient mice. Circulation 21:759–767CrossRefGoogle Scholar
  5. 5.
    Napoli C, Williams-Ignarro S, Nigris F, Lerman LO, D’Armiento FP, Crimi E, Byrns RE, Casamassimi A, Lanza A, Gombos F, Sica V (2006) Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. PNAS 13:10479–10484CrossRefGoogle Scholar
  6. 6.
    Meilhac O, Ramachandran S, Chiang K, Santanam N, Parthasarathy S (2001) Role of arterial wall antioxidant defense in beneficial effects of exercise on atherosclerosis in mice. Arterioscler Thromb Vasc Biol 21:1681–1688PubMedCrossRefGoogle Scholar
  7. 7.
    Wang X, Rader DJ (2007) Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol 22:368–372PubMedCrossRefGoogle Scholar
  8. 8.
    Institute of Laboratory Animal Research CoLS (1996) National Research Council guide for the care and use of laboratory animals. In: Council NR (ed). National Academy Press, Washington (DC), p 124Google Scholar
  9. 9.
    Lowry OH, Rosebrough NJ, Farr Al, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  10. 10.
    Basu SK, Goldstein JL, Anderson RGW, Brown MS (1976) Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous hypercholesterolemia fibroblasts. Proc Natl Acad Sci 73:3178–3182PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ (2003) Overexpression of apolipoprotein A-1 promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 108:661–663PubMedCrossRefGoogle Scholar
  12. 12.
    Folch J, Lees M, Stanley S (1957) A simple method for the isolation and purification of total lipids from animal’s tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  13. 13.
    Escolà-Gil JC, Julve J, Marzal-Casacuberta A, Ordóñez-Llanos J, González-Sastre F, Blanco-Vaca F (2001) ApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. J Lipid Res 42:241–248PubMedGoogle Scholar
  14. 14.
    Gupta AK, Ross EA, Myers JN, Kashyap ML (1993) Increased reverse cholesterol transport in athletes. Metabolism 42:684–690PubMedCrossRefGoogle Scholar
  15. 15.
    Olchawa B, Kingwell BA, Hoang A, Schneider L, Miyazaki O, Nestel P, Sviridov D (2004) Physical fitness and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 24:1087–1091PubMedCrossRefGoogle Scholar
  16. 16.
    Wei C, Penumetcha M, Santanam N, Liu GY, Garelnabi M, Parthasarathy S (2005) Exercise might favor reverse cholesterol transport and lipoprotein clearance: potential mechanism for its anti-atherosclerotic effects. Biochim Biophys Acta 1723:124–127PubMedGoogle Scholar
  17. 17.
    Wilund KR, Feeney LA, Tomayko EJ, Chung HR, Kim K (2008) Endurance exercise training reduces gallstone development in mice. J Appl Physiol 104:761–765PubMedCrossRefGoogle Scholar
  18. 18.
    Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote reverse cholesterol transport in vivo. J Clin Invest 117:2216–2224PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ (2005) Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 115:2870–2874PubMedCrossRefGoogle Scholar
  20. 20.
    Mardones P, Quiñones V, Amigo L, Moreno M, Miquel JF, Schwarz M, Miettinen HE, Trigatti B, Krieger M, VanPatten S, Cohen DE, Rigotti A (2001) Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res 42:170–180PubMedGoogle Scholar
  21. 21.
    Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ (2000) Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 20:721–727PubMedGoogle Scholar
  22. 22.
    Gauthier A, Lau P, Zha X, Milne R, McPherson R (2005) Cholesteryl ester transfer protein directly mediates selective uptake of high density lipoprotein cholesteryl esters by the liver. Arterioscler Thromb Vasc Biol 25:2177–2184PubMedCrossRefGoogle Scholar
  23. 23.
    Vassiliou G, McPherson R (2004) Role of cholesteryl ester transfer protein in selective uptake of high density lipoprotein cholesteryl esters by adipocytes. J Lipid Res 5:1683–1693CrossRefGoogle Scholar
  24. 24.
    Harada LM, Amigo L, Cazita PM, Salerno AG, Rigotti AA, Quintão EC, Oliveira HC (2007) CETP expression enhances liver HDL-cholesteryl ester uptake but does not alter VLDL and biliary lipid secretion. Atherosclerosis 191:313–318PubMedCrossRefGoogle Scholar
  25. 25.
    Rotllan N, Calpe-Berdiel L, Guillaumet-Adkins A, Süren-Castillo S, Blanco-Vaca F, Escolà-Gil JC (2008) CETP activity variation in mice does not affect two major HDL antiatherogenic properties: macrophage-specific reverse cholesterol transport and LDL antioxidant protection. Atherosclerosis 196:505–513PubMedCrossRefGoogle Scholar
  26. 26.
    Tchoua U, D'Souza W, Mukhamedova N, Blum D, Niesor E, Mizrahi J, Maugeais C, Sviridov D (2008) The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport. Cardiovascular Res 77:732–739CrossRefGoogle Scholar
  27. 27.
    Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ (2007) Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116:1267–1273PubMedCrossRefGoogle Scholar
  28. 28.
    Harder C, Lau P, Meng A, Whitman SC, McPherson R (2007) Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol 27:858–864PubMedCrossRefGoogle Scholar
  29. 29.
    Meissner M, Havinga R, Boverhof R, Kema I, Groen AK, Kuipers F (2010) Exercise enhances whole-body cholesterol turnover in mice. Med Sci Sports Exerc 42:1460–1468PubMedCrossRefGoogle Scholar
  30. 30.
    Yasuda T, Grillot D, Bilheimer JT, Briand F, Delerive P, Huet S, Rader DJ (2010) Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 30(4):781–786PubMedCrossRefGoogle Scholar
  31. 31.
    Sehayek E, Hazen SL (2008) Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol 28:1296–1297PubMedCrossRefGoogle Scholar
  32. 32.
    Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM (2010) Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 12:96–102PubMedCrossRefGoogle Scholar
  33. 33.
    Meissner M, Nijstad N, Kuipers F, Tietge UJ (2010) Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice. Nutr Metab 1:54CrossRefGoogle Scholar
  34. 34.
    Zhou H, Li Z, Silver DL, Jiang XC (2006) Cholesteryl ester transfer protein (CETP) expression enhances HDL cholesteryl ester liver delivery, which is independently of scavenger receptor BI, LDL receptor related protein and possibly LDL receptor. Biochim Biophys Acta 1761:1482–1488PubMedGoogle Scholar
  35. 35.
    Calpe-Berdiel L, Rotllan N, Palomer X, Ribas V, Blanco-Vaca F, Escolà-Gil JC (2005) Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice. Biochim Biophys Acta 1738:6–9PubMedGoogle Scholar
  36. 36.
    Couillard C, Després JP, Lamarche B, Bergeron J, Gagnon J, Leon AS, Rao DC, Skinner JS, Wilmore JH, Bouchard C (2001) Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Arterioscler Thromb Vasc Biol 21:1226–1232PubMedCrossRefGoogle Scholar
  37. 37.
    Mukherjee M, Shetty KR (2004) Variations in high-density lipoprotein cholesterol in relation to physical activity and Taq 1B polymorphism of the cholesteryl ester transfer protein gene. Clin Genet 65:412–418PubMedCrossRefGoogle Scholar
  38. 38.
    Sorlí JV, Corella D, Francés F, Ramírez JB, González JI, Guillén M, Portolés O (2006) The effect of the APOE polymorphism on HDL-C concentrations depends on the cholesterol ester transfer protein gene variation in a Southern European population. Clin Chim Acta 366:196–203PubMedCrossRefGoogle Scholar
  39. 39.
    Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, Tansey T, Amar MJ, Fruchart-Najib J, Duverger N, Santamarina-Fojo S, Brewer HB Jr (2003) J Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res 44(2):296–302PubMedCrossRefGoogle Scholar
  40. 40.
    Wellington CL, Brunham LR, Zhou S, Singaraja RR, Visscher H, Gelfer A, Ross C, James E, Liu G, Huber MT, Yang YZ, Parks RJ, Groen A, Fruchart-Najib J, Hayden MR (2003) Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J Lipid Res 44(2):1470–1480PubMedCrossRefGoogle Scholar
  41. 41.
    Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL, Hayden MR, Maeda N, Parks JS (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115(5):1333–1342PubMedGoogle Scholar
  42. 42.
    Singaraja RR, Stahmer B, Brundert M, Merkel M, Heeren J, Bissada N, Kang M, Timmins JM, Ramakrishnan R, Parks JS, Hayden MR, Rinninger F (2006) Hepatic ATP-binding cassette transporter A1 is a key molecule in high-density proprotein cholesteryl ester metabolism in mice. Arterioscler Thromb Vasc Biol 26(8):1821–1827PubMedCrossRefGoogle Scholar
  43. 43.
    Ghanbari-Niaki A, Khabazian BM, Hossaini-Kakhak SA, Rahbarizadeh F, Hedayati M (2007) Treadmill exercise enhances ABCA1 expression in rat liver. Biochem Biophys Res Commun 361:841–846PubMedCrossRefGoogle Scholar
  44. 44.
    Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K (2008) Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med Sci Sports Exerc 40:1263–1270PubMedCrossRefGoogle Scholar
  45. 45.
    Okabe TA, Shimada K, Hattori M, Murayama T, Yokode M, Kita T, Kishimoto C (2007) Swimming reduces the severity of atherosclerosis in apolipoprotein E deficient mice by antioxidant effects. Cardiovasc Res 74:537–545PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2011

Authors and Affiliations

  • D. D. F. M. Rocco
    • 1
  • L. S. Okuda
    • 1
  • R. S. Pinto
    • 1
  • F. D. Ferreira
    • 1
  • S. K. Kubo
    • 2
  • E. R. Nakandakare
    • 1
  • E. C. R. Quintão
    • 1
  • S. Catanozi
    • 1
  • M. Passarelli
    • 1
  1. 1.Lipids Laboratory (LIM-10), Faculty of Medical SciencesUniversity of Sao PauloSao PauloBrazil
  2. 2.Emergency Care Research Unit (LIM-51), Faculty of Medical SciencesUniversity of Sao PauloSao PauloBrazil

Personalised recommendations