, Volume 46, Issue 4, pp 323–332

Presence of Apolipoprotein C-III Attenuates Apolipoprotein E-Mediated Cellular Uptake of Cholesterol-Containing Lipid Particles by HepG2 Cells

  • Shin-ya Morita
  • Atsushi Sakurai
  • Minoru Nakano
  • Shuji Kitagawa
  • Tetsurou Handa
Original Article


Apolipoprotein C-III (apoC-III) decreases the apolipoprotein E (apoE)-mediated uptake of lipoprotein remnants by the liver, and a high plasma concentration of apoC-III in VLDL is associated with hypertriglyceridemia and the risk of coronary heart disease. In this study, we prepared lipid emulsions containing triolein, phosphatidylcholine and cholesterol as model particles of lipoproteins, and examined the roles of apoC-III in apoE-mediated uptake of emulsions by HepG2 cells. Cholesterol in emulsion particles enhanced the apoE-mediated uptake via heparan sulfate proteoglycan and LDL receptor-related protein pathways. The amount of apoE bound to emulsion particles was increased by the presence of cholesterol at the particle surface, whereas cholesterol had no effect on the binding amount of apoC-III. Surface cholesterol alleviated the inhibitory effect of apoC-III on apoE incorporation into the emulsion surface. However, ApoC-III almost completely inhibited the apoE-mediated uptake of cholesterol-containing emulsions despite sufficient binding of apoE to emulsions. These findings suggest that apoC-III attenuates the binding of apoE to the lipoprotein surface and apoE-mediated cellular uptake of lipoprotein remnants. Furthermore, cholesterol may affect these functions of apoC-III and apoE involved in the clearance of lipoprotein remnants.


Apolipoprotein C-III Apolipoprotein E Cholesterol Lipid emulsions 



Apolipoprotein C-III


Apolipoprotein E


Heparan sulfate proteoglycan


LDL receptor-related protein



PMC oleate

Pyrenemethyl 3β-(cis-9-octadecenoyloxy)-22,23-bisnor-5-cholenate






  1. 1.
    Luc G, Fievet C, Arveiler D, Evans AE, Bard JM, Cambien F, Fruchart JC, Ducimetiere P (1996) Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur ‘Infarctus du Myocarde. J Lipid Res 37:508–517PubMedGoogle Scholar
  2. 2.
    Sacks FM, Alaupovic P, Moye LA, Cole TG, Sussex B, Stampfer MJ, Pfeffer MA, Braunwald E (2000) VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation 102:1886–1892PubMedGoogle Scholar
  3. 3.
    Lee SJ, Campos H, Moye LA, Sacks FM (2003) LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler Thromb Vasc Biol 23:853–858PubMedCrossRefGoogle Scholar
  4. 4.
    Lee SJ, Moye LA, Campos H, Williams GH, Sacks FM (2003) Hypertriglyceridemia but not diabetes status is associated with VLDL containing apolipoprotein CIII in patients with coronary heart disease. Atherosclerosis 167:293–302PubMedCrossRefGoogle Scholar
  5. 5.
    Chan DC, Watts GF, Nguyen MN, Barrett PH (2006) Apolipoproteins C-III and A-V as predictors of very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Arterioscler Thromb Vasc Biol 26:590–596PubMedCrossRefGoogle Scholar
  6. 6.
    Mendivil CO, Zheng C, Furtado J, Lel J, Sacks FM (2010) Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol 30:239–245PubMedCrossRefGoogle Scholar
  7. 7.
    Zheng C, Khoo C, Furtado J, Sacks FM (2010) Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 121:1722–1734PubMedCrossRefGoogle Scholar
  8. 8.
    Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O’Connell JR, Shuldiner AR (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322:1702–1705PubMedCrossRefGoogle Scholar
  9. 9.
    Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N (2006) Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol 4:e113PubMedCrossRefGoogle Scholar
  10. 10.
    Petersen KF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, Zhang XM, Dziura J, Lifton RP, Shulman GI (2010) Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 362:1082–1089PubMedCrossRefGoogle Scholar
  11. 11.
    Saito H, Lund-Katz S, Phillips MC (2004) Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Prog Lipid Res 43:350–380PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471PubMedCrossRefGoogle Scholar
  13. 13.
    Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353PubMedCrossRefGoogle Scholar
  14. 14.
    Batal R, Tremblay M, Barrett PH, Jacques H, Fredenrich A, Mamer O, Davignon J, Cohn JS (2000) Plasma kinetics of apoC-III and apoE in normolipidemic and hypertriglyceridemic subjects. J Lipid Res 41:706–718PubMedGoogle Scholar
  15. 15.
    Krauss RM (1998) Atherogenicity of triglyceride-rich lipoproteins. Am J Cardiol 81:13B–17BPubMedCrossRefGoogle Scholar
  16. 16.
    de Silva HV, Lauer SJ, Wang J, Simonet WS, Weisgraber KH, Mahley RW, Taylor JM (1994) Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 269:2324–2335PubMedGoogle Scholar
  17. 17.
    Masucci-Magoulas L, Goldberg IJ, Bisgaier CL, Serajuddin H, Francone OL, Breslow JL, Tall AR (1997) A mouse model with features of familial combined hyperlipidemia. Science 275:391–394PubMedCrossRefGoogle Scholar
  18. 18.
    van Dijk KW, Rensen PC, Voshol PJ, Havekes LM (2004) The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr Opin Lipidol 15:239–246PubMedCrossRefGoogle Scholar
  19. 19.
    Kowal RC, Herz J, Weisgraber KH, Mahley RW, Brown MS, Goldstein JL (1990) Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 265:10771–10779PubMedGoogle Scholar
  20. 20.
    Sehayek E, Eisenberg S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266:18259–18267PubMedGoogle Scholar
  21. 21.
    Morita SY, Okuhira K, Tsuchimoto N, Vertut-Doi A, Saito H, Nakano M, Handa T (2003) Effects of sphingomyelin on apolipoprotein E- and lipoprotein lipase-mediated cell uptake of lipid particles. Biochim Biophys Acta 1631:169–176PubMedGoogle Scholar
  22. 22.
    Sakurai A, Morita SY, Wakita K, Deharu Y, Nakano M, Handa T (2005) Effects of cholesterol in chylomicron remnant models of lipid emulsions on apoE-mediated uptake and cytotoxicity of macrophages. J Lipid Res 46:2214–2220PubMedCrossRefGoogle Scholar
  23. 23.
    Morita SY, Kawabe M, Sakurai A, Okuhira K, Vertut-Doi A, Nakano M, Handa T (2004) Ceramide in lipid particles enhances heparan sulfate proteoglycan and low density lipoprotein receptor-related protein-mediated uptake by macrophages. J Biol Chem 279:24355–24361PubMedCrossRefGoogle Scholar
  24. 24.
    Heuser JE, Anderson RG (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400PubMedCrossRefGoogle Scholar
  25. 25.
    Denicola A, Batthyany C, Lissi E, Freeman BA, Rubbo H, Radi R (2002) Diffusion of nitric oxide into low density lipoprotein. J Biol Chem 277:932–936PubMedCrossRefGoogle Scholar
  26. 26.
    Vogel T, Weisgraber KH, Zeevi MI, Ben-Artzi H, Levanon AZ, Rall SC Jr, Innerarity TL, Hui DY, Taylor JM, Kanner D, Yavin Z, Amit B, Aviv H, Gorecki M, Mahley RW (1985) Human apolipoprotein E expression in Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E. Proc Natl Acad Sci USA 82:8696–8700PubMedCrossRefGoogle Scholar
  27. 27.
    Tajima S, Yokoyama S, Yamamoto A (1983) Effect of lipid particle size on association of apolipoproteins with lipid. J Biol Chem 258:10073–10082PubMedGoogle Scholar
  28. 28.
    Morita SY, Nakano M, Sakurai A, Deharu Y, Vertut-Doi A, Handa T (2005) Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Lett 579:1759–1764PubMedCrossRefGoogle Scholar
  29. 29.
    Mahley RW, Ji ZS (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40:1–16PubMedGoogle Scholar
  30. 30.
    Ji ZS, Sanan DA, Mahley RW (1995) Intravenous heparinase inhibits remnant lipoprotein clearance from the plasma and uptake by the liver: in vivo role of heparan sulfate proteoglycans. J Lipid Res 36:583–592PubMedGoogle Scholar
  31. 31.
    Ji ZS, Mahley RW (1994) Lactoferrin binding to heparan sulfate proteoglycans and the LDL receptor-related protein. Further evidence supporting the importance of direct binding of remnant lipoproteins to HSPG. Arterioscler Thromb 14:2025–2031PubMedGoogle Scholar
  32. 32.
    Curtiss LK, Boisvert WA (2000) Apolipoprotein E and atherosclerosis. Curr Opin Lipidol 11:243–251PubMedCrossRefGoogle Scholar
  33. 33.
    Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 19:472–484PubMedGoogle Scholar
  34. 34.
    Morita SY, Kawabe M, Nakano M, Handa T (2003) Pluronic L81 affects the lipid particle sizes and apolipoprotein B conformation. Chem Phys Lipids 126:39–48PubMedCrossRefGoogle Scholar
  35. 35.
    Morita SY, Deharu Y, Takata E, Nakano M, Handa T (2008) Cytotoxicity of lipid-free apolipoprotein B. Biochim Biophys Acta 1778:2594–2603PubMedCrossRefGoogle Scholar
  36. 36.
    Liu H, Talmud PJ, Lins L, Brasseur R, Olivecrona G, Peelman F, Vandekerckhove J, Rosseneu M, Labeur C (2000) Characterization of recombinant wild type and site-directed mutations of apolipoprotein C-III: lipid binding, displacement of ApoE, and inhibition of lipoprotein lipase. Biochemistry 39:9201–9212PubMedCrossRefGoogle Scholar
  37. 37.
    Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283:17416–17427PubMedCrossRefGoogle Scholar
  38. 38.
    Westerlund JA, Weisgraber KH (1993) Discrete carboxyl-terminal segments of apolipoprotein E mediate lipoprotein association and protein oligomerization. J Biol Chem 268:15745–15750PubMedGoogle Scholar
  39. 39.
    Sakamoto T, Tanaka M, Vedhachalam C, Nickel M, Nguyen D, Dhanasekaran P, Phillips MC, Lund-Katz S, Saito H (2008) Contributions of the carboxyl-terminal helical segment to the self-association and lipoprotein preferences of human apolipoprotein E3 and E4 isoforms. Biochemistry 47:2968–2977PubMedCrossRefGoogle Scholar
  40. 40.
    Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822PubMedCrossRefGoogle Scholar
  41. 41.
    Croy JE, Brandon T, Komives EA (2004) Two apolipoprotein E mimetic peptides, ApoE(130–149) and ApoE(141–155)2, bind to LRP1. Biochemistry 43:7328–7335PubMedCrossRefGoogle Scholar
  42. 42.
    Guttman M, Prieto JH, Handel TM, Domaille PJ, Komives EA (2010) Structure of the minimal interface between ApoE and LRP. J Mol Biol 398:306–319PubMedCrossRefGoogle Scholar
  43. 43.
    Saito H, Dhanasekaran P, Nguyen D, Baldwin F, Weisgraber KH, Wehrli S, Phillips MC, Lund-Katz S (2003) Characterization of the heparin binding sites in human apolipoprotein E. J Biol Chem 278:14782–14787PubMedCrossRefGoogle Scholar
  44. 44.
    Sivashanmugam A, Wang J (2009) A unified scheme for initiation and conformational adaptation of human apolipoprotein E N-terminal domain upon lipoprotein binding and for receptor binding activity. J Biol Chem 284:14657–14666PubMedCrossRefGoogle Scholar
  45. 45.
    Lund-Katz S, Zaiou M, Wehrli S, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC (2000) Effects of lipid interaction on the lysine microenvironments in apolipoprotein E. J Biol Chem 275:34459–34464PubMedCrossRefGoogle Scholar
  46. 46.
    Lund-Katz S, Wehrli S, Zaiou M, Newhouse Y, Weisgraber KH, Phillips MC (2001) Effects of polymorphism on the microenvironment of the LDL receptor-binding region of human apoE. J Lipid Res 42:894–901PubMedGoogle Scholar
  47. 47.
    Yamamoto T, Ryan RO (2006) Role of leucine zipper motif in apoE3 N-terminal domain lipid binding activity. Biochim Biophys Acta 1761:1100–1106PubMedGoogle Scholar
  48. 48.
    Ben-Yashar V, Barenholz Y (1991) Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores. Chem Phys Lipids 60:1–14PubMedCrossRefGoogle Scholar
  49. 49.
    Redgrave TG, Small DM (1979) Quantitation of the transfer of surface phospholipid of chylomicrons to the high density lipoprotein fraction during the catabolism of chylomicrons in the rat. J Clin Invest 64:162–171PubMedCrossRefGoogle Scholar
  50. 50.
    Windler EE, Preyer S, Greten H (1986) Influence of lysophosphatidylcholine on the C-apolipoprotein content of rat and human triglyceride-rich lipoproteins during triglyceride hydrolysis. J Clin Invest 78:658–665PubMedCrossRefGoogle Scholar
  51. 51.
    Maranhao RC, Tercyak AM, Redgrave TG (1986) Effects of cholesterol content on the metabolism of protein-free emulsion models of lipoproteins. Biochim Biophys Acta 875:247–255PubMedGoogle Scholar
  52. 52.
    Saito H, Minamida T, Arimoto I, Handa T, Miyajima K (1996) Physical states of surface and core lipids in lipid emulsions and apolipoprotein binding to the emulsion surface. J Biol Chem 271:15515–15520PubMedCrossRefGoogle Scholar
  53. 53.
    Redgrave TG, Vassiliou GG, Callow MJ (1987) Cholesterol is necessary for triacylglycerol-phospholipid emulsions to mimic the metabolism of lipoproteins. Biochim Biophys Acta 921:154–157PubMedGoogle Scholar
  54. 54.
    Aalto-Setala K, Fisher EA, Chen X, Chajek-Shaul T, Hayek T, Zechner R, Walsh A, Ramakrishnan R, Ginsberg HN, Breslow JL (1992) Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 90:1889–1900PubMedCrossRefGoogle Scholar
  55. 55.
    Narayanaswami V, Ryan RO (2000) Molecular basis of exchangeable apolipoprotein function. Biochim Biophys Acta 1483:15–36PubMedGoogle Scholar
  56. 56.
    Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC (1995) Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol 15:963–971PubMedGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Shin-ya Morita
    • 1
  • Atsushi Sakurai
    • 2
  • Minoru Nakano
    • 2
  • Shuji Kitagawa
    • 1
  • Tetsurou Handa
    • 2
    • 3
  1. 1.Kobe Pharmaceutical UniversityKobeJapan
  2. 2.Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  3. 3.Faculty of Pharmaceutical SciencesSuzuka University of Medical ScienceSuzukaJapan

Personalised recommendations