, Volume 45, Issue 9, pp 863–875 | Cite as

Lipid Profiling Reveals Tissue-Specific Differences for Ethanolamide Lipids in Mice Lacking Fatty Acid Amide Hydrolase

  • Aruna Kilaru
  • Giorgis Isaac
  • Pamela Tamura
  • David Baxter
  • Scott R. Duncan
  • Barney J. Venables
  • Ruth Welti
  • Peter Koulen
  • Kent D. Chapman
Original Article


N-Acylethanolamines (NAE) are fatty acid derivatives, some of which function as endocannabinoids in mammals. NAE metabolism involves common (phosphatidylethanolamines, PEs) and uncommon (N-acylphosphatidylethanolamines, NAPEs) membrane phospholipids. Here we have identified and quantified more than a hundred metabolites in the NAE/endocannabinoid pathway in mouse brain and heart tissues, including many previously unreported molecular species of NAPE. We found that brain tissue of mice lacking fatty acid amide hydrolase (FAAH−/−) had elevated PE and NAPE molecular species in addition to elevated NAEs, suggesting that FAAH activity participates in the overall regulation of this pathway. This perturbation of the NAE pathway in brain was not observed in heart tissue of FAAH−/− mice, indicating that metabolic regulation of the NAE pathway differs in these two organs and the metabolic enzymes that catabolize NAEs are most likely differentially distributed and/or regulated. Targeted lipidomics analysis, like that presented here, will continue to provide important insights into cellular lipid signaling networks.


FAAH Endocannabinoids N-Acylethanolamines Lipid profiling Lipid signaling Lipid mediators Mass spectrometry 





Alk(en)yl,acyl glycerophosphocholine


Alk(en)yl,acyl glycerophosphoethanolamine


Electrospray ionization


Fatty acid amide hydrolase


Free fatty acid


Fresh weight












Neutral loss


Phosphatidic acid








Phospholipase D








Wild type


Designates carbon chain length: total number of carbon–carbon double bonds



We would like to thank Mary R. Roth for expert technical assistance. This work was supported by a seed grant from the University of North Texas and by a grant from the US Department of Energy, Office of Basic Energy Sciences (DE-FG02-05ER15647). This study was supported in part by NIH grants MD001633 from NCMHD (R.S.D.), EY014227, AG010485, AG022550, and AG027956 (P.K.) as well as by The Garvey Texas Foundation and the Felix and Carmen Sabates Missouri Endowed Chair in Vision Research (P.K.). Instrument acquisition and method development at the Kansas Lipidomics Research Center were supported by NSF grants MCB 0455318 and DBI 0521587, K-INBRE (NIH Grant P20 RR16475 from the INBRE program of the National Center for Research Resources), and NSF EPSCoR grant EPS-0236913 with matching support from the State of Kansas through Kansas Technology Enterprise Corporation and Kansas State University.


  1. 1.
    De Petrocellis L, Di Marzo V (2009) An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 23(1):1–15. doi:10.1016/j.beem.2008.10.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Di Marzo V, Bisogno T, De Petrocellis L (2000) Endocannabinoids: new targets for drug development. Curr Pharm Des 6(13):1361–1380CrossRefPubMedGoogle Scholar
  3. 3.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949CrossRefPubMedGoogle Scholar
  4. 4.
    Schmid HH, Schmid PC, Natarajan V (1996) The n-acylation-phosphodiesterase pathway and cell signalling. Chem Phys Lipids 80(1–2):133–142CrossRefPubMedGoogle Scholar
  5. 5.
    Schmid HH, Schmid PC, Natarajan V (1990) N-acylated glycerophospholipids and their derivatives. Prog Lipid Res 29(1):1–43CrossRefPubMedGoogle Scholar
  6. 6.
    Giang DK, Cravatt BF (1997) Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci USA 94(6):2238–2242CrossRefPubMedGoogle Scholar
  7. 7.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384(6604):83–87CrossRefPubMedGoogle Scholar
  8. 8.
    Ahn K, McKinney MK, Cravatt BF (2008) Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 108(5):1687–1707CrossRefPubMedGoogle Scholar
  9. 9.
    Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4(11):873–884CrossRefPubMedGoogle Scholar
  10. 10.
    Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296(5568):678–682CrossRefPubMedGoogle Scholar
  11. 11.
    Natarajan V, Schmid PC, Schmid HH (1986) N-acylethanolamine phospholipid metabolism in normal and ischemic rat brain. Biochim Biophys Acta 878(1):32–41PubMedGoogle Scholar
  12. 12.
    Natarajan V, Reddy PV, Schmid PC, Schmid HH (1981) On the biosynthesis and metabolism of n-acylethanolamine phospholipids in infarcted dog heart. Biochim Biophys Acta 664(2):445–448PubMedGoogle Scholar
  13. 13.
    Epps DE, Natarajan V, Schmid PC, Schmid HO (1980) Accumulation of N-acylethanolamine glycerophospholipids in infarcted myocardium. Biochim Biophys Acta 618(3):420–430PubMedGoogle Scholar
  14. 14.
    Epps DE, Schmid PC, Natarajan V, Schmid HH (1979) N-Acylethanolamine accumulation in infarcted myocardium. Biochem Biophys Res Commun 90(2):628–633CrossRefPubMedGoogle Scholar
  15. 15.
    Walker JM, Krey JF, Chen JS, Vefring E, Jahnsen JA, Bradshaw H, Huang SM (2005) Targeted lipidomics: fatty acid amides and pain modulation. Prostaglandins Other Lipid Mediat 77(1–4):35–45CrossRefPubMedGoogle Scholar
  16. 16.
    Astarita G, Geaga J, Ahmed F, Piomelli D (2009) Chapter 4: Targeted lipidomics as a tool to investigate endocannabinoid function. Int Rev Neurobiol 85:35–55CrossRefPubMedGoogle Scholar
  17. 17.
    Astarita G, Piomelli D (2009) Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2755–2767Google Scholar
  18. 18.
    Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98(16):9371–9376CrossRefPubMedGoogle Scholar
  19. 19.
    Fontana A, Di Marzo V, Cadas H, Piomelli D (1995) Analysis of anandamide, an endogenous cannabinoid substance, and of other natural n-acylethanolamines. Prostaglandins Leukot Essent Fatty Acids 53(4):301–308CrossRefPubMedGoogle Scholar
  20. 20.
    Clement AB, Hawkins EG, Lichtman AH, Cravatt BF (2003) Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. J Neurosci 23(9):3916–3923PubMedGoogle Scholar
  21. 21.
    Venables BJ, Waggoner CA, Chapman KD (2005) N-acylethanolamines in seeds of selected legumes. Phytochemistry 66(16):1913–1918. doi:10.1016/j.phytochem.2005.06.014 CrossRefPubMedGoogle Scholar
  22. 22.
    Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, Welti R, Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry 67(17):1907–1924. doi:10.1016/j.phytochem.2006.06.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Astarita G, Ahmed F, Piomelli D (2008) Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J Lipid Res 49(1):48–57. doi:10.1194/jlr.M700354-JLR200 CrossRefPubMedGoogle Scholar
  24. 24.
    Welti R, Li M, Li W, Sang Y, Biesiada H, Zhou H-E, Rajashekar C, Williams T, Wang X (2002) Profiling membrane lipids in plant stress response. J Biol Chem 277:31994–32002CrossRefPubMedGoogle Scholar
  25. 25.
    Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. In: Elizabeth FN, Victor G (eds) Methods in enzymology, vol 8. Academic Press, New York, pp 115–118Google Scholar
  26. 26.
    Shoemaker DP, Garland CW, Steinfeld JI (1974) Experiments in physical chemistry, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Welti R, Shah J, Li W, Li M, Chen J, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang X (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506CrossRefPubMedGoogle Scholar
  28. 28.
    Cravatt BF, Lichtman AH (2004) The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol 61(1):149–160. doi:10.1002/neu.20080 CrossRefPubMedGoogle Scholar
  29. 29.
    Muccioli GG, Stella N (2008) An optimized GC-MS method detects nanomolar amounts of anandamide in mouse brain. Anal Biochem 373(2):220–228. doi:10.1016/j.ab.2007.09.030 CrossRefPubMedGoogle Scholar
  30. 30.
    Schmid HH, Schmid PC, Berdyshev EV (2002) Cell signaling by endocannabinoids and their congeners: questions of selectivity and other challenges. Chem Phys Lipids 121(1–2):111–134CrossRefPubMedGoogle Scholar
  31. 31.
    Schmid HH, Berdyshev EV (2002) Cannabinoid receptor-inactive n-acylethanolamines and other fatty acid amides: metabolism and function. Prostaglandins Leukot Essent Fatty Acids 66(2–3):363–376CrossRefPubMedGoogle Scholar
  32. 32.
    Hansen HS, Moesgaard B, Hansen HH, Petersen G (2000) N-Acylethanolamines and precursor phospholipids—relation to cell injury. Chem Phys Lipids 108(1–2):135–150CrossRefPubMedGoogle Scholar
  33. 33.
    McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432CrossRefPubMedGoogle Scholar
  34. 34.
    Duncan RS, Chapman KD, Koulen P (2009) The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line. Mol Neurodegener 4:50. doi:10.1186/1750-1326-4-50 CrossRefPubMedGoogle Scholar
  35. 35.
    Garg P, Duncan RS, Kaja S, Koulen P (2010) Intracellular mechanisms of n-acylethanolamine-mediated neuroprotection in a rat model of stroke. Neuroscience 166(1):252–262. doi:10.1016/j.neuroscience.2009.11.069 CrossRefPubMedGoogle Scholar
  36. 36.
    Astarita G, Geaga J, Ahmed F, Piomelli D (2009) Targeted lipidomics as a tool to investigate endocannabinoid function. Int Rev Neurobiol 85:35–55. doi:10.1016/S0074-7742(09)85004-6 CrossRefPubMedGoogle Scholar
  37. 37.
    Astarita G, Piomelli D (2009) Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2755–2767. doi:10.1016/j.jchromb.2009.01.008 CrossRefPubMedGoogle Scholar
  38. 38.
    Bisogno T, De Petrocellis L, Di Marzo V (2010) Methods for measuring endocannabinoid production and expression and activity of enzymes involved in the endocannabinoid system. In: Murphy EJ, Rosenberger TA (eds) Lipid mediated signaling. Methods in signal transduction series, March 2010 edn. CRC Press, Boca Raton, FL, pp 109–150Google Scholar
  39. 39.
    Ueda N, Puffenbarger RA, Yamamoto S, Deutsch DG (2000) The fatty acid amide hydrolase (FAAH). Chem Phys Lipids 108(1–2):107–121CrossRefPubMedGoogle Scholar
  40. 40.
    Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280(12):11082–11092. doi:10.1074/jbc.M413473200 CrossRefPubMedGoogle Scholar
  41. 41.
    Brites P, Waterham HR, Wanders RJ (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636(2–3):219–231. doi:10.1016/j.bbalip.2003.12.010 PubMedGoogle Scholar
  42. 42.
    Terova B, Heczko R, Slotte JP (2005) On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine. Biophys J 88(4):2661–2669. doi:10.1529/biophysj.104.058149 CrossRefPubMedGoogle Scholar
  43. 43.
    Di Marzo V, De Petrocellis L, Sugiura T, Waku K (1996) Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells. Biochem Biophys Res Commun 227(1):281–288. doi:10.1006/bbrc.1996.1501 CrossRefPubMedGoogle Scholar
  44. 44.
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylgylcerol—a possible endogenous cannabinoid receptor-ligand in brain. Biochem Biophys Res Commun 215(1):89–97CrossRefPubMedGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Aruna Kilaru
    • 1
    • 4
  • Giorgis Isaac
    • 2
    • 5
  • Pamela Tamura
    • 2
  • David Baxter
    • 1
  • Scott R. Duncan
    • 3
  • Barney J. Venables
    • 1
  • Ruth Welti
    • 2
  • Peter Koulen
    • 1
    • 3
  • Kent D. Chapman
    • 1
  1. 1.Department of Biological Sciences, Center for Plant Lipid ResearchUniversity of North TexasDentonUSA
  2. 2.Division of Biology, Kansas Lipidomics Research CenterKansas State UniversityManhattanUSA
  3. 3.Departments of Basic Medical Science and Ophthalmology, School of MedicineUniversity of Missouri-Kansas CityKansas CityUSA
  4. 4.Department of Plant BiologyMichigan State UniversityEast LansingUSA
  5. 5.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations