, Volume 45, Issue 7, pp 645–649

Enhanced Bioavailability of Eicosapentaenoic Acid from Fish Oil After Encapsulation Within Plant Spore Exines as Microcapsules

  • Ammar Wakil
  • Grahame Mackenzie
  • Alberto Diego-Taboada
  • J. Gordon Bell
  • Stephen L. Atkin


Benefits of eicosapentaenoic acid (EPA) can be enhanced by raising their bioavailability through microencapsulation. Pollen can be emptied to form hollow shells, known as exines, and then used to encapsulate material, such as oils in a dry powder form. Six healthy volunteers ingested 4.6 g of fish oil containing 20% EPA in the form of ethyl ester first alone and then as 1:1 microencapsulated powder of exines and fish oil. Serum bioavailability of EPA was measured by area under curve (AUC0–24). The mean AUC0–24 of EPA from ethyl ester with exine (M = 19.7, SD = 4.3) was significantly higher than ethyl ester without exines (M = 2, SD = 1.4, p < 0.01).The bioavailability of EPA is enhanced by encapsulation by pollen exines.


Exines Microencapsulation Eicosapentaenoic acid Bioavailability 



Argon laser


Area under the curve between time 0–24 h


Butylated hydroxytoluene


Chloroform methanol


Eicosapentaeoic acid


Fatty acid methyl esters


Gas liquid chromatography


Helium neon


Long chain poly unsaturated fatty acids




Standard Deviation


Scanning electron microscopy


Statistical Package for the Social Sciences


  1. 1.
    Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369:1090–1098CrossRefPubMedGoogle Scholar
  2. 2.
    Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM (2006) n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83:S1526–S1535Google Scholar
  3. 3.
    Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224CrossRefPubMedGoogle Scholar
  4. 4.
    Kolanowski W, Laufenberg G, Kunz B (2004) Fish oil stabilisation by microencapsulation with modified cellulose. Int J Food Sci Nutr 55:333–343CrossRefPubMedGoogle Scholar
  5. 5.
    Shaw G (1997) Sporopollenin in Phytochemical Phylogeny. Academic Press, LondonGoogle Scholar
  6. 6.
    Barrier S, Löbbert A, Boasman AJ, Boa AN, Lorch M, Atkin SL, Mackenzie G (2010) Access to a primary aminosporopollenin solid support from plant spores. Green Chem 12:234–240CrossRefGoogle Scholar
  7. 7.
    Barrier S, Rigby AS, Diego-Taboada A, Thomasson MJ, Mackenzie G, Atkin SL (2010) Sporopollenin exines: a novel natural taste masking material. LWT Food Sci Technol 43:73–76CrossRefGoogle Scholar
  8. 8.
    Lorch M, Thomasson MJ, Diego-Taboada A, Barrier S, Atkin SL, Mackenzie G, Archibald SJ (2009) MRI contrast agent delivery using spore capsules: controlled release in blood plasma. Chem Commun (Camb) 6442–6444Google Scholar
  9. 9.
    Paunov VN, Mackenzie G, Stoyanov SD (2007) Sporopollenin micro-reactors for in situ preparation, encapsulation and targeted delivery of active components. Mater Chem 17:609–612CrossRefGoogle Scholar
  10. 10.
    Gordon Bell J, Miller D, MacDonald DJ, MacKinlay EE, Dick JR, Cheseldine S, Boyle RM, Graham C, O’Hare AE (2009) The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 103:1160–1167Google Scholar
  11. 11.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  12. 12.
    Christie W (2003) Lipid analysis. The Oily Press, BridgewaterGoogle Scholar
  13. 13.
    Tremoli E, Eligini S, Colli S, Maderna P, Rise P, Pazzucconi F, Marangoni F, Sirtori CR, Galli C (1994) n-3 Fatty acid ethyl ester administration to healthy subjects and to hypertriglyceridemic patients reduces tissue factor activity in adherent monocytes. Arterioscler Thromb 14:1600–1608PubMedGoogle Scholar
  14. 14.
    Gowda D, Ravi V, Shivakumar H, Hatna S (2009) Preparation, evaluation and bioavailability studies of indomethacin-bees wax microspheres. J Mater Sci Mater Med 20:1447–1456CrossRefPubMedGoogle Scholar
  15. 15.
    Tao Y, Lu Y, Sun Y, Gu B, Lu W, Pan J (2009) Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability. Int J Pharm 378:30–36CrossRefPubMedGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Ammar Wakil
    • 1
  • Grahame Mackenzie
    • 2
  • Alberto Diego-Taboada
    • 2
  • J. Gordon Bell
    • 3
  • Stephen L. Atkin
    • 1
  1. 1.Hull Royal InfirmaryMichael White Diabetes CentreHullUK
  2. 2.Department of ChemistryUniversity of HullHullUK
  3. 3.Nutrition GroupInstitute of Aquaculture, University of StirlingStirlingUK

Personalised recommendations