Lipids

, Volume 45, Issue 5, pp 429–436

Impact of Administered Bifidobacterium on Murine Host Fatty Acid Composition

  • Rebecca Wall
  • R. Paul Ross
  • Fergus Shanahan
  • Liam O’Mahony
  • Barry Kiely
  • Eamonn Quigley
  • Timothy G. Dinan
  • Gerald Fitzgerald
  • Catherine Stanton
Original Article

Abstract

Recently, we reported that administration of Bifidobacteria resulted in increased concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in murine adipose tissue [1]. The objective of this study was to assess the impact of co-administration of Bifidobacterium breve NCIMB 702258 and the substrate for EPA, α-linolenic acid, on host fatty acid composition. α-Linolenic acid-supplemented diets (1%, wt/wt) were fed to mice (n = 8), with or without B. breve NCIMB 702258 (daily dose of 109 microorganisms) for 8 weeks. Two further groups received either supplement of B. breve alone or unsupplemented diet. Tissue fatty acid composition was assessed by gas liquid chromatography. Dietary supplementation of α-linolenic acid resulted in higher (P < 0.05) α-linolenic acid and EPA concentrations in liver and adipose tissue and lower (P < 0.05) arachidonic acid in liver, adipose tissue and brain compared with mice that did not receive α-linolenic acid. Supplementation with B. breve NCIMB 702258 in combination with α-linolenic acid resulted in elevated (P < 0.05) liver EPA concentrations compared with α-linolenic acid supplementation alone. Furthermore, the former group had higher (P < 0.05) DHA in brain compared with the latter group. These results suggest a role for interactions between fatty acids and commensals in the gastrointestinal tract. This interaction between administered microbes and fatty acids could result in a highly effective nutritional approach to the therapy of a variety of inflammatory and neurodegenerative conditions.

Keywords

Omega-3 fatty acids Eicosapentaenoic acid Docosahexaenoic acid Bifidobacteria Microbiota Probiotics 

Abbreviations

ANOVA

Analysis of variance

CFU

Colony forming units

CLA

Conjugated linoleic acid

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

FAME

Fatty acid methyl esters

IBD

Inflammatory bowel disease

IFN-γ

Interferon-γ

MTP

Microsomal triglyceride transfer protein

MRS

de Man, Rogosa and Sharpe

PBS

Phosphate buffered saline

PUFA

Polyunsaturated fatty acids

PFGE

Pulse-field gel electrophoresis

SDS

Special diets services

SEM

Standard error mean

TNF-α

Tumor necrosis factor-α

References

  1. 1.
    Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C (2009) The metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401CrossRefPubMedGoogle Scholar
  2. 2.
    Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379CrossRefPubMedGoogle Scholar
  3. 3.
    Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52:885–897CrossRefPubMedGoogle Scholar
  4. 4.
    Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST (2003) Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100:1751–1756CrossRefPubMedGoogle Scholar
  5. 5.
    Robinson JG, Stone NJ (2006) Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. Am J Cardiol 98:39–49CrossRefGoogle Scholar
  6. 6.
    Salem N, Wegher B, Mena P, Uauy R (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 93:49–54CrossRefPubMedGoogle Scholar
  7. 7.
    Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, Ishibashi Y, Oka J, Shido O (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem 81:1084–1091CrossRefPubMedGoogle Scholar
  8. 8.
    Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707CrossRefPubMedGoogle Scholar
  9. 9.
    O’Hara AM, Shanahan F (2006) The gut as a forgotten organ. EMBO Rep 7:688–693CrossRefPubMedGoogle Scholar
  10. 10.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723CrossRefPubMedGoogle Scholar
  11. 11.
    Marchesi J, Shanahan F (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20:508–513CrossRefPubMedGoogle Scholar
  12. 12.
    Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11:307–313CrossRefPubMedGoogle Scholar
  13. 13.
    Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73:2333–2337CrossRefPubMedGoogle Scholar
  14. 14.
    Lee K, Paek K, Lee HY, Park JH, Lee Y (2007) Antiobestity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103:1140–1146CrossRefPubMedGoogle Scholar
  15. 15.
    Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145CrossRefPubMedGoogle Scholar
  16. 16.
    Orikasa Y, Yamada A, Yu R, Ito Y, Nishida T, Yumoto I (2004) Characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. strain SCRC-2738. Cell Mol Biol 50:625–630PubMedGoogle Scholar
  17. 17.
    Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293CrossRefPubMedGoogle Scholar
  18. 18.
    Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767–779CrossRefPubMedGoogle Scholar
  19. 19.
    Yano Y, Nakayama A, Saito H, Ishihara K (1994) Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527–528CrossRefPubMedGoogle Scholar
  20. 20.
    Kaplas N, Isolauri E, Lampi AM, Ojala T, Laitinen K (2007) Dietary counselling and probiotic supplementation during pregnancy modify placental phospholipid fatty acids. Lipids 45:865–870CrossRefGoogle Scholar
  21. 21.
    Kankaanpää PE, Yang B, Kallio HP, Isolauri E, Salminen SJ (2002) Influence of probiotic supplemented infant formula on composition of plasma lipids in atopic infants. J Nutr Biochem 13:364–369CrossRefPubMedGoogle Scholar
  22. 22.
    Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff U, Hontecillas R (2004) Activation of PPARγ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791CrossRefPubMedGoogle Scholar
  23. 23.
    O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT (2007) A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85:1511–1521CrossRefPubMedGoogle Scholar
  24. 24.
    Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54CrossRefPubMedGoogle Scholar
  25. 25.
    Favier C, Neut C, Mizon C, Cortot A, Colombel JF, Mizon J (1997) Fecal beta-D-galactosidase production and Bifidobacteria are decreased in Crohn’s disease. Dig Dis Sci 42:817–822CrossRefPubMedGoogle Scholar
  26. 26.
    Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu PV, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M, Bäckhed F (2009) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res doi:10.1194/jlr.M002774
  27. 27.
    Oresic M, Seppänen-Laakso T, Yetukuri L, Bäckhed F, Hänninen V (2009) Gut microbiota affects lens and retinal lipid composition. Exp Eye Res 89(5):604–607CrossRefPubMedGoogle Scholar
  28. 28.
    Simopoulos AP (2003) Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet 92:1–22CrossRefPubMedGoogle Scholar
  29. 29.
    Dinan T, Siggins L, Scully P, O’Brien S, Ross P, Stanton C (2008) Investigating the inflammatory phenotype of major depression: focus on cytokines and polyunsaturated fatty acids. J Psychiatr Res 43:471–476CrossRefPubMedGoogle Scholar
  30. 30.
    Jupp J, Hillier K, Elliott DH, Fine DR, Bateman AC, Johnson PA, Cazaly AM, Penrose JF, Sampson AP (2007) Colonic expression of leukotriene-pathway enzymes in inflammatory bowel diseases. Inflamm Bowel Dis 13:537–546CrossRefPubMedGoogle Scholar
  31. 31.
    Wallace JL (2001) Prostaglandin biology in inflammatory bowel disease. Gastroenterol Clin North Am 30:971–980CrossRefPubMedGoogle Scholar
  32. 32.
    James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 71:343S–438SPubMedGoogle Scholar
  33. 33.
    Simopoulos AP, Leaf A, Salem N (2000) Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 63:119–121CrossRefPubMedGoogle Scholar
  34. 34.
    Chapkin RS, Davidson LA, Ly L, Weeks BR, Lupton JR, McMurray DN (2007) Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J Nutr 137:200–204Google Scholar
  35. 35.
    Fukushima M, Yamada A, Endo T, Nakano M (1999) Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta-6 desaturase activity in the livers of rats fed a fat and cholesterol-enriched diet. Nutrition 15:373–378CrossRefPubMedGoogle Scholar
  36. 36.
    Troost FJ, van Baarlen P, Lindsey P, Kodde A, de Vos WM, Kleerebezem M, Brummer RJ (2008) Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFSI in vivo. BMC Genomics 9:374–388CrossRefPubMedGoogle Scholar
  37. 37.
    Nieman C (1954) Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev 18(2):147–163PubMedGoogle Scholar
  38. 38.
    Laser H (1951) Adaptation of Bacillus subtilis to fatty acids. Biochem J 49(5):lxvi–lxviiPubMedGoogle Scholar
  39. 39.
    Kelsey JA, Bayles KW, Shafii B, McGuire MA (2006) Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids 41(10):951–961CrossRefPubMedGoogle Scholar
  40. 40.
    Kankanpää PE, Salminen SJ, Isolauri E, Lee YK (2001) The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett 194:149–153CrossRefGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Rebecca Wall
    • 1
  • R. Paul Ross
    • 1
    • 2
  • Fergus Shanahan
    • 1
  • Liam O’Mahony
    • 1
  • Barry Kiely
    • 4
  • Eamonn Quigley
    • 1
  • Timothy G. Dinan
    • 1
  • Gerald Fitzgerald
    • 1
    • 3
  • Catherine Stanton
    • 1
    • 2
  1. 1.Alimentary Pharmabiotic Centre (APC)Co. CorkIreland
  2. 2.Teagasc, Moorepark Food Research CentreCo. CorkIreland
  3. 3.University College CorkNational University of IrelandCorkIreland
  4. 4.Alimentary Health (AH)Co. CorkIreland

Personalised recommendations