, 43:1143

Expression and Characterization of CYP51, the Ancient Sterol 14-demethylase Activity for Cytochromes P450 (CYP), in the White-Rot Fungus Phanerochaete chrysosporium

  • Andrew Warrilow
  • Cynthia Ugochukwu
  • David Lamb
  • Diane Kelly
  • Steven Kelly
Original Article


Phanerochaete chrysosporium was the first fungal genome to exhibit more than one hundred cytochrome P450 (CYP) genes for a fungus within its genome (~150). It can metabolize lignocellulose and a wide range of environmental xenobiotics including many carcinogens and pollutants where cytochromes P450 may be involved. In the present paper we describe the heterologous expression and characterization of an ancestral CYP form, sterol 14α-demethylase (CYP51—EC1.14.13.70), from this organism. CYP51 was cloned from a cDNA library and expressed in both Escherichia coli, where it exhibited high affinity for azole antifungals, and Saccharomyces cerevisiae. Proof of function was observed by complementation of a conditional knock-down mutant of yeast CYP51. The CYP51 gene was found to be 1,956 bases long and contained 7 exons and 6 introns coding for a polypeptide 550 amino acids long (62 kDa). The CYP51 protein exhibited high affinity (kd 0.25–0.45 μM) for azole antifungal compounds.


CYP51 Phanerochaete chrysosporium Expression Characterization 


  1. 1.
    Pszcynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Prog 11:368–379CrossRefGoogle Scholar
  2. 2.
    Juhasz A, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo(a)pyrene. Int Biodeter Biodegrad 45:57–88CrossRefGoogle Scholar
  3. 3.
    Bumpus JA, Aust SD (1987) Biodegradation of DTT [1, 1, 1-trichloro-2, 2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008PubMedGoogle Scholar
  4. 4.
    Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328CrossRefGoogle Scholar
  5. 5.
    Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1996) Evidence for cytochrome P450 and P450-mediated benzo(a)pyrene hydroxylation in the white-rot fungus Phanerochaete chrysosporium. FEMS Lett 135:51–55CrossRefGoogle Scholar
  6. 6.
    Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92PubMedCrossRefGoogle Scholar
  7. 7.
    Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white-rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73PubMedCrossRefGoogle Scholar
  8. 8.
    Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700PubMedCrossRefGoogle Scholar
  9. 9.
    Kelly SL, Lamb DC, Jackson CJ, Warrilow AGS, Kelly DE (2003) The biodiversity of microbial cytochromes P450. Adv Microb Physiol 47:131–186PubMedCrossRefGoogle Scholar
  10. 10.
    Doddapaneni V, Subramanian V, Yadav JS (2005) Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50:292–298PubMedCrossRefGoogle Scholar
  11. 11.
    Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monoxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65:559–565PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuzaki F, Wariishi H (2005) Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 334:1184–1190PubMedCrossRefGoogle Scholar
  13. 13.
    Gietz RD, Schiestl RH (1991) Application of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263PubMedCrossRefGoogle Scholar
  14. 14.
    Arase M, Waterman MR, Kagawa N (2006) Purification and characterization of bovine steroid 21-hydroxylase (P450c21) efficiently expressed in Escherichia coli. Biochem Biophys Res Commun 344:400–405PubMedCrossRefGoogle Scholar
  15. 15.
    Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14 alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 96:8937–8942PubMedCrossRefGoogle Scholar
  16. 16.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  17. 17.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378PubMedGoogle Scholar
  18. 18.
    Lamb DC, Kelly DE, Schunck WH, Shyadehi AZ, Akhtar M, Lowe DJ, Baldwin BC, Kelly SL (1997) The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 272:5682–5688PubMedCrossRefGoogle Scholar
  19. 19.
    Lamb DC, Kelly DE, Venkateswarlu K, Manning NJ, Bligh HF, Schunck WH, Kelly SL (1999) Generation of a complete, soluble, and catalytically active sterol 14 alpha-demethylase–reductase complex. Biochemistry 38:8733–8738PubMedCrossRefGoogle Scholar
  20. 20.
    Ouellet H, Podust LM, Ortiz de Montellano PR (2008) Mycobacterium tuberculosis CYP130: crystal structure, biophysical characterization, and interactions with antifungal azole drugs. J Biol Chem 283:5069–5080PubMedCrossRefGoogle Scholar
  21. 21.
    Hegemann J (1998) Essential genes and gene families. EUROFAN, Interim Report 1, pp 33–34Google Scholar
  22. 22.
    Groenveld P, Rolley N, Kell DB, Kelly SL, Kelly DE (2002) Metabolic control analysis and engineering of the yeast sterol biosynthetic pathway. Mol Biol Rep 29:27–29CrossRefGoogle Scholar
  23. 23.
    Revankar SG, Fu J, Rinaldi MG, Kelly SL, Kelly DE, Lamb DC, Keller SM, Wickes BL (2004) Cloning and characterization of the lanosterol 14α-demethylase (ERG11) gene in Cryptococcus neoformans. Biochem Biophys Res Commun 324:719–728PubMedCrossRefGoogle Scholar
  24. 24.
    Kelly SL, Arnoldi A, Kelly DE (1993) Molecular genetic analysis of azole antifungal mode of action. Biochem Soc Trans 98:1034–1038Google Scholar
  25. 25.
    Lamb DC, Kelly DE, Waterman MR, Stromstedt M, Rozman D, Kelly SL (1999) Characteristics of the heterologously expressed human lanosterol 14α-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candida albicans CYP51 with azole antifungal agents. Yeast 15:755–763PubMedCrossRefGoogle Scholar
  26. 26.
    Kelly SL, Lamb DC, Loeffler J, Einsele H, Kelly DE (1999) The G464S amino acid substitution in Candida albicans sterol 14α-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun 262:174–179PubMedCrossRefGoogle Scholar
  27. 27.
    Kalb VF, Loper JC, Dey CR, Woods CW, Sutter TR (1986) Isolation of a cytochrome P450 structural gene from Saccharomyces cerevisiae. Gene 45:237–245PubMedCrossRefGoogle Scholar
  28. 28.
    Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537PubMedCrossRefGoogle Scholar
  29. 29.
    Lamb DC, Kelly DE, Manning NJ, Hollomon DW, Kelly SL (1998) Expression, purification, reconstitution and inhibition of Ustilago maydis sterol 14α-demethylase (CYP51; P450DM). FEMS Microbiol Lett 169:369–373PubMedGoogle Scholar
  30. 30.
    Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA 98:3068–3073PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2008

Authors and Affiliations

  • Andrew Warrilow
    • 1
  • Cynthia Ugochukwu
    • 1
  • David Lamb
    • 1
  • Diane Kelly
    • 1
  • Steven Kelly
    • 1
  1. 1.Institute of Life Science, School of MedicineSwansea UniversitySwanseaUK

Personalised recommendations