, Volume 43, Issue 10, pp 925–936 | Cite as

Women and Smokers Have Elevated Urinary F2-Isoprostane Metabolites: A Novel Extraction and LC–MS Methodology

  • Alan W. Taylor
  • Richard S. Bruno
  • Maret G. Traber
Original Article


F2-Isoprostanes (F2-IsoPs), regio- and stereoisomers of prostaglandin F (PGF), and urinary F2-IsoP metabolites including 2,3-dinor-5,6-dihydro-8-iso-PGF [2,3-dinor-8-iso-PGF (2,3-dinor-F1)] and 2,3 dinor-8-iso-PGF (2,3-dinor-F2), have all been used as biomarkers of oxidative stress. A novel method was developed to measure these biomarkers using a single solid phase extraction (SPE) cartridge, separation by HPLC, and detection by negative mode selected reaction monitoring (SRM) mass spectrometry (MS), using authentic standards of PGF; 8-iso-PGF; 2,3-dinor-F1 and 2,3-dinor-F2 to identify specific chromatographic peaks. The method was validated in a population of healthy, college-aged nonsmokers (n = 6 M/8F) and smokers (n = 6 M/5F). Urinary F2-IsoP concentrations were ~0.2–1.5 μg/g creatinine, 2,3-dinor-F1 was ~1–3 μg/g and 2,3-dinor-F2 was ~3–5 μg/g. Additional F2-IsoPs metabolites were identified using SRM. The sum of all urinary F2-IsoP metabolites was 50–100 μg/g creatinine indicating their greater abundance than F2-IsoPs. Women had higher F2-IsoP metabolite concentrations than did men (MANOVA, main effect P = 0.003); cigarette smokers had higher concentrations than did nonsmokers (main effect P = 0.036). For men or women, respectively, smokers had higher metabolite concentrations than did nonsmokers (P < 0.05). Thus, our method simultaneously allows measurement of urinary F2-IsoPs and their metabolites for the determination of oxidative stress.


Oxidative stress LC–MS F2-Isoprostanes F2-Isoprostane metabolites Prostaglandin F (PGFCigarette smoking Gender difference 2,3-dinor-5,6-dihydro-8-iso-PGF 2,3 dinor-8-iso-PGF 



Collision energies




Gas chromatography-mass spectrometry


Liquid chromatography-mass spectrometry


Solid phase extraction


Selected reaction monitoring

2,3 dinor-F1

2,3-dinor-5,6-dihydro-8-iso-PGF, or 2,3-dinor-8-iso-PGF

2,3 dinor-F2



  1. 1.
    Morrow JD, Harris TM, Roberts LJ 2nd (1990) Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem 184:1–10PubMedCrossRefGoogle Scholar
  2. 2.
    Lawson JA, Rokach J, FitzGerald GA (1999) Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J Biol Chem 274:24441–24444PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts LJII, Morrow JD (2000) Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513PubMedCrossRefGoogle Scholar
  4. 4.
    Chiabrando C, Valagussa A, Rivalta C, Durand T, Guy A, Zuccato E, Villa P, Rossi J-C, Fanelli R (1999) Identification and measurement of endogenous B-oxidation metabolites of 8-epi-prostaglandin F2a. J Biol Chem 274:1313–1319PubMedCrossRefGoogle Scholar
  5. 5.
    Davies SS, Zackert W, Luo Y, Cunningham CC, Frisard M, Roberts LJ 2nd (2006) Quantification of dinor, dihydro metabolites of F(2)-isoprostanes in urine by liquid chromatography/tandem mass spectrometry. Anal Biochem 348:185–191PubMedCrossRefGoogle Scholar
  6. 6.
    Roberts LJII, Moore KP, Zackert WE, Oates JA, Morrow JD (1996) Identification of the major metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans. J Biol Chem 271:20617–20620PubMedCrossRefGoogle Scholar
  7. 7.
    Nourooz-Zadeh J, Cooper MB, Ziegler D, Betteridge DJ (2005) Urinary 8-epi-pgf2a and its endogenous B-oxidation products (2, 3-dinor and 2, 3-dinor–5, 6-dihydro) as biomarkers of total body oxidative stress. Biochem Biophys Res Comm 330:731–736PubMedCrossRefGoogle Scholar
  8. 8.
    Morrow JD, Zackert WE, Yang JP, Kurhts EH, Callewaert, Oates JA, Roberts LJ, II (1999) Quantification of the major urinary metabolite of 15-F2t-isoprostane (8-iso-pgf2a) by a stable isotope dilution mass spectrometric assay. Anal Biochem 269:326–331Google Scholar
  9. 9.
    Blumberg JB, Frei B (2007) Why clinical trials of vitamin E and cardiovascular diseases may be fatally flawed. commentary on “the relationship between dose of vitamin E and suppression of oxidative stress in humans”. Free Radic Biol Med 43:1374–1376PubMedCrossRefGoogle Scholar
  10. 10.
    Liang Y, Wei P, Duke RW, Reaven PD, Harman SM, Cutler RG, Heward CB (2003) Quantification of 8-iso-prostaglandin-F2alpha and 2, 3-dinor-8-iso-prostaglandin-F2alpha in human urine using liquid chromatography-tandem mass spectrometry. Free Radic Biol Med 34:409–418PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor AW, Bruno RS, Frei B, Traber MG (2006) Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F2-isoprostanes. Anal Biochem 350:41–51PubMedCrossRefGoogle Scholar
  12. 12.
    Bruno RS, Leonard SW, Atkinson JK, Montine TJ, Ramakrishnan R, Bray TM, Traber MG (2006) Faster vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic Biol Med 40:689–697PubMedCrossRefGoogle Scholar
  13. 13.
    Levine M, Wang Y, Padayatty S, Morrow J (2001) A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA 98:9842–9846PubMedCrossRefGoogle Scholar
  14. 14.
    Yin H, Gao L, Tai H-H, Murphey LJ, Porter NA, Morrow JD (2007) Urinary prostaglandin F2a is generated from the isoprostane pathway and not the cyclooxygenase in humans. J Biol Chem 282:329–336PubMedCrossRefGoogle Scholar
  15. 15.
    Basu S, Helmersson J (2005) Factors regulating isoprostane formation in vivo. Antioxid Redox Signal 7:221–235PubMedCrossRefGoogle Scholar
  16. 16.
    Bohnstedt KC, Karlberg B, Wahlund LO, Jonhagen ME, Basun H, Schmidt S (2003) Determination of isoprostanes in urine samples from Alzheimer patients using porous graphitic carbon liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 796:11–19PubMedCrossRefGoogle Scholar
  17. 17.
    Welsh TN, Hubbard S, Mitchell CM, Mesiano S, Zarzycki PK, Zakar T (2007) Optimization of a solid phase extraction procedure for prostaglandin E2, F2 alpha and their tissue metabolites. Prostaglandins Other Lipid Mediat 83:304–310PubMedCrossRefGoogle Scholar
  18. 18.
    Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJII (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332:1198–1203PubMedCrossRefGoogle Scholar
  19. 19.
    Reilly NDM, Delanty N, Lawson JA, FitzGerald GA (1996) Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 94:19–25PubMedGoogle Scholar
  20. 20.
    Morrow JD, Awad JA, Kato T, Takahashi K, Badr KF, Roberts LJ 2nd, Burk RF (1992) Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. an animal model of lipid peroxidation. J Clin Invest 90:2502–2507PubMedCrossRefGoogle Scholar
  21. 21.
    Bruno RS, Traber MG (2005) Cigarette smoke alters human vitamin E requirements. J Nutr 135:671–674PubMedGoogle Scholar
  22. 22.
    Bruno RS, Traber MG (2006) Vitamin E biokinetics, oxidative stress and cigarette smoking. Pathophysiology 13:143–149PubMedCrossRefGoogle Scholar
  23. 23.
    Hao CM, Breyer MD (2008) Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol 70:357–377PubMedCrossRefGoogle Scholar
  24. 24.
    Gao L, Zackert WE, Hasford JJ, Danekis ME, Milne GL, Remmert C, Reese J, Yin H, Tai HH, Dey SK et al (2003) Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J Biol Chem 278:28479–28489PubMedCrossRefGoogle Scholar
  25. 25.
    Ide T, Tsutsui H, Ohashi N, Hayashidani S, Suematsu N, Tsuchihashi M, Tamai H, Takeshita A (2002) Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol 22:438–442PubMedCrossRefGoogle Scholar
  26. 26.
    Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214PubMedGoogle Scholar
  27. 27.
    Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156:274–285PubMedCrossRefGoogle Scholar
  28. 28.
    Coudray C, Roussel AM, Mainard F, Arnaud J, Favier A (1997) Lipid peroxidation level and antioxidant micronutrient status in a pre-aging population; correlation with chronic disease prevalence in a French epidemiological study (Nantes, France). J Am Coll Nutr 16:584–591PubMedGoogle Scholar

Copyright information

© AOCS 2008

Authors and Affiliations

  • Alan W. Taylor
    • 1
  • Richard S. Bruno
    • 2
  • Maret G. Traber
    • 1
  1. 1.Linus Pauling InstituteOregon State UniversityCorvallisUSA
  2. 2.Department of Nutritional SciencesUniversity of ConnecticutStorrsUSA

Personalised recommendations