Lipids

, 43:741 | Cite as

Anti-Tumor Effect of Orally Administered Spinach Glycolipid Fraction on Implanted Cancer Cells, Colon-26, in Mice

  • Naoki Maeda
  • Yasuo Kokai
  • Seiji Ohtani
  • Hiroeki Sahara
  • Yuko Kumamoto-Yonezawa
  • Isoko Kuriyama
  • Takahiko Hada
  • Noriyuki Sato
  • Hiromi Yoshida
  • Yoshiyuki Mizushina
Original Article

Abstract

We succeeded in purifying a major glycolipid fraction from a green vegetable, spinach. This fraction consists mainly of three glycolipids: monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), and sulfoquinovosyl diacylglycerol (SQDG). In a previous study, we found that the glycolipid fraction inhibited DNA polymerase activity, cancer cell growth and tumor growth with subcutaneous injection. We aimed to clarify oral administration of the glycolipid fraction, suppressing colon adenocarcinoma (colon-26) tumor growth in mice. A tumor graft study showed that oral administration of 20 mg/kg glycolipid fraction for 2 weeks induced a 56.1% decrease in the solid tumor volume (P < 0.05) without any side-effects, such as loss of body weight or major organ failure, in mice. The glycolipid fraction induced the suppression of colon-26 tumor growth with inhibition of angiogenesis and the expression of cell proliferation marker proteins such as Ki-67, proliferating cell nuclear antigen (PCNA), and Cyclin E in the tumor tissue. These results suggest that the orally administered glycolipid fraction from spinach could suppress colon tumor growth in mice by inhibiting the activities of neovascularization and cancer cellular proliferation in tumor tissue.

Keywords

Glycolipid Spinach Anti-tumor activity Anti-angiogenesis activity Anti-cancer cell growth activity 

Abbreviations

MGDG

Monogalactosyl diacylglycerol

DGDG

Digalactosyl diacylglycerol

SQDG

Sulfoquinovosyl diacylglycerol

PBS

Phosphate-buffered saline

PCNA

Proliferating cell nuclear antigen

vWF

von Willebrand Factor

MVD

Microvessel density

Notes

Acknowledgments

This investigation was supported by a Grant-in-Aid for JSPS Fellows (N. M.), a Grant-in-Aid for Kobe-Gakuin University Joint Research (A) (H. Y. and Y. M.) and a “Life Science Center for Cooperative Research” Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2006–2010 (H. Y. and Y. M.). Y. M. acknowledges a Grant-in-Aid for Young Scientists (A) (No. 19680031) from MEXT, and Grant-in-Aids from the Nakashima Foundation (Japan) and the Foundation of the Oil & Fat Industry kaikan (Japan).

References

  1. 1.
    Roughan PG, Batt RD (1969) The glycerolipid composition of leaves. Phytochemistry 8:363–369CrossRefGoogle Scholar
  2. 2.
    Ohta K, Mizushina Y, Hirata N, Takemura M, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem Pharm Bull (Tokyo) 46:684–686Google Scholar
  3. 3.
    Mizushina Y, Watanabe I, Ohta K, Takemura M, Sahara H, Takahashi N, Gasa S, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Studies on inhibitors of mammalian DNA polymerase alpha and beta: sulfolipids from a pteridophyte, Athyrium niponicum. Biochem Pharmacol 55:537–541PubMedCrossRefGoogle Scholar
  4. 4.
    Ohta K, Hanashima S, Mizushina Y, Yamazaki T, Saneyoshi M, Sugawara F, Sakaguchi K (2000) Studies on a novel DNA polymerase inhibitor group, synthetic sulfoquinovosylacylglycerols: inhibitory action on cell proliferation. Mutat Res 467:139–152PubMedGoogle Scholar
  5. 5.
    Hanashima S, Mizushina Y, Ohta K, Yamazaki T, Sugawara F, Sakaguchi K (2000) Structure–activity relationship of a novel group of mammalian DNA polymerase inhibitors, synthetic sulfoquinovosylacylglycerols. Jpn J Cancer Res 91:1073–1083PubMedGoogle Scholar
  6. 6.
    Murakami C, Kumagai T, Hada T, Kanekazu U, Nakazawa S, Kamisuki S, Maeda N, Xu X, Yoshida H, Sugawara F, Sakaguchi K, Mizushina Y (2003) Effects of glycolipids from spinach on mammalian DNA polymerases. Biochem Pharmacol 65:259–267PubMedCrossRefGoogle Scholar
  7. 7.
    Maeda N, Hada T, Yoshida H, Mizushina Y (2007) Inhibitory effect on replicative DNA polymerases, human cancer cell proliferation, and in vivo anti-tumor activity by glycolipids from spinach. Curr Med Chem 14:955–967PubMedCrossRefGoogle Scholar
  8. 8.
    Quasney ME, Carter LC, Oxford C, Watkins SM, Gershwin ME, German JB (2001) Inhibition of proliferation and induction of apoptosis in SNU-1 human gastric cancer cells by the plant sulfolipid, sulfoquinovosyldiacylglycerol. J Nutr Biochem 12:310–315PubMedCrossRefGoogle Scholar
  9. 9.
    Hossain Z, Kurihara H, Hosokawa M, Takahashi K (2005) Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in Caco-2 cells with algal glycolipids. In Vitro Cell Dev Biol Anim 41:154–159PubMedCrossRefGoogle Scholar
  10. 10.
    Matsubara K, Matsumoto H, Mizushina Y, Mori M, Nakajima N, Fuchigami M, Yoshida H, Hada T (2005) Inhibitory effect of glycolipids from spinach on in vitro and ex vivo angiogenesis. Oncol Rep 14:157–160PubMedGoogle Scholar
  11. 11.
    Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, Iwashima A (1995) Anti-tumor-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40:1433–1437PubMedCrossRefGoogle Scholar
  12. 12.
    Colombo D, Franchini L, Toma L, Ronchetti F, Nakabe N, Konoshima T, Nishino H, Tokuda H (2005) Anti-tumor-promoting activity of simple models of galactoglycerolipids with branched and unsaturated acyl chains. Eur J Med Chem 40:69–74PubMedCrossRefGoogle Scholar
  13. 13.
    Inoue T, Dehmukh DS, Pieringer RA (1971) The association of the galactosyl diglycerides of brain with myelination. I: changes in the concentration of monogalactosyl diglyceride in the somal and myelin fractions of brain of rats during development. J Biol Chem 246:5688–5694PubMedGoogle Scholar
  14. 14.
    Nagai Y, Isono Y (1965) Occurrence of animal sulfolipid in the gametes of sea urchins. Jpn J Exp Med 35:315–318PubMedGoogle Scholar
  15. 15.
    Kitagawa I, Hamamoto Y, Kobayashi M (1979) Sulfonoglycolipid from the sea urchin Anthocidaris crassispina A. Agassiz. Chem Pharm Bull (Tokyo) 27:1394–1397Google Scholar
  16. 16.
    Kuriyama I, Musumi K, Yonezawa Y, Takemura M, Maeda N, Iijima H, Hada T, Yoshida H, Mizushina Y (2005) Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. J Nutr Biochem 16:594–601PubMedCrossRefGoogle Scholar
  17. 17.
    Maeda N, Hada T, Murakami-Nakai C, Kuriyama I, Ichikawa H, Fukumori Y, Hiratsuka J, Yoshida H, Sakaguchi K, Mizushina Y (2005) Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach. J Nutr Biochem 16:121–128PubMedCrossRefGoogle Scholar
  18. 18.
    Maeda N, Kokai Y, Ohtani S, Sahara H, Hada T, Ishimaru C, Kuriyama I, Yonezawa Y, Iijima H, Yoshida H, Sato N, Mizushina Y (2007) Anti-tumor effects of the glycolipids fraction from spinach which inhibited DNA polymerase activity. Nutr Cancer 57:216–223PubMedGoogle Scholar
  19. 19.
    Ohlsson L, Blom M, Bohlinder K, Carlsson A, Nilsson A (1998) Orally fed digalactosyldiacylglycerol is degraded during absorption in intact and lymphatic duct cannulated rats. J Nutr 128:239–245PubMedGoogle Scholar
  20. 20.
    Sugawara T, Miyazawa T (2000) Digestion of plant monogalactosyldiacylglycerol and digalactosyldiacylglycerol in rat alimentary canal. J Nutr Biochem 11:147–152PubMedCrossRefGoogle Scholar
  21. 21.
    Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, Nilsson A (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36:1392–1400PubMedGoogle Scholar
  22. 22.
    Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35:2434–2439PubMedGoogle Scholar
  23. 23.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  24. 24.
    Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715PubMedGoogle Scholar
  25. 25.
    Kubben FJ, Peeters-Haesevoets A, Engels LG, Baeten CG, Schutte B, Arends JW, Stockbrugger RW, Blijham GH (1994) Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35:530–535PubMedCrossRefGoogle Scholar
  26. 26.
    Dong Y, Sui L, Tai Y, Sugimoto K, Hirao T, Tokuda M (2000) Prognostic significance of cyclin E overexpression in laryngeal squamous cell carcinomas. Clin Cancer Res 6:4253–4258PubMedGoogle Scholar
  27. 27.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8PubMedGoogle Scholar
  28. 28.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedGoogle Scholar
  29. 29.
    Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203PubMedCrossRefGoogle Scholar
  30. 30.
    Bossi P, Viale G, Lee AK, Alfano R, Coggi G, Bosari S (1995) Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 55:5049–5053PubMedGoogle Scholar
  31. 31.
    Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968PubMedGoogle Scholar
  32. 32.
    Takahashi Y, Bucana CD, Liu W, Yoneda J, Kitadai Y, Cleary KR, Ellis LM (1996) Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst 88:1146–1151PubMedCrossRefGoogle Scholar
  33. 33.
    Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, Bedrosian I, Knickerbocker C, Toyofuku W, Lowe M, Herliczek TW, Bacus SS (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347:1566–1575PubMedCrossRefGoogle Scholar
  34. 34.
    Dobashi Y, Jiang SX, Shoji M, Morinaga S, Kameya T (2003) Diversity in expression and prognostic significance of G1/S cyclins in human primary lung carcinomas. J Pathol 199:208–220PubMedCrossRefGoogle Scholar
  35. 35.
    Hotta K, Shimoda T, Nakanishi Y, Saito D (2006) Usefulness of Ki-67 for predicting the metastatic potential of rectal carcinoids. Pathol Int 56:591–596PubMedCrossRefGoogle Scholar
  36. 36.
    Mizushina Y, Maeda N, Kawasaki M, Ichikawa H, Murakami C, Takemura M, Xu X, Sugawara F, Fukumori Y, Yoshida H, Sakaguchi K (2003) Inhibitory action of emulsified sulfoquinovosyl acylglycerol on mammalian DNA polymerases. Lipids 38:1065–1074PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2008

Authors and Affiliations

  • Naoki Maeda
    • 1
    • 2
  • Yasuo Kokai
    • 3
  • Seiji Ohtani
    • 3
  • Hiroeki Sahara
    • 4
  • Yuko Kumamoto-Yonezawa
    • 1
  • Isoko Kuriyama
    • 1
    • 2
  • Takahiko Hada
    • 5
  • Noriyuki Sato
    • 6
  • Hiromi Yoshida
    • 1
    • 7
  • Yoshiyuki Mizushina
    • 1
    • 7
  1. 1.Laboratory of Food and Nutritional Sciences, Department of Nutritional ScienceKobe-Gakuin UniversityKobeJapan
  2. 2.Japan Society for the Promotion of ScienceKobe-Gakuin UniversityKobeJapan
  3. 3.Biomedical Research Center Laboratory of Biomedical EngineeringSapporo Medical University School of MedicineChuo-kuJapan
  4. 4.Marine Biomedical InstituteSapporo Medical University School of MedicineHokkaidoJapan
  5. 5.Hada Giken Co. LtdYamaguchiJapan
  6. 6.Pathology and ChemistrySapporo Medical University School of MedicineSapporoJapan
  7. 7.Cooperative Research Center of Life SciencesKobe-Gakuin UniversityKobeJapan

Personalised recommendations