, Volume 42, Issue 8, pp 765–776

Liquid Chromatography–Mass Spectrometric Analysis of Lipids Present in Human Meibomian Gland Secretions

  • Igor A. Butovich
  • Eduardo Uchiyama
  • Mario A. Di Pascuale
  • James P. McCulley
Original Article


The purpose of the study was to qualitatively characterize the major lipid species present in human meibomian gland secretions (MGS) by means of high-performance liquid chromatography with atmospheric pressure ionization mass spectrometric detection of the analytes (NP HPLC-MS). Two different NP HPLC-MS methods have been developed to analyze lipid species that were expected to be present in MGS. The first method was optimized for the analysis of relatively nonpolar lipids [wax esters (WE), di- and triacyl glycerols (DAG and TAG), cholesterol (Chl) and its esters (Chl-E), and ceramides (Cer)], while the second method was designed to separate and detect phospholipids. The major lipid species in MGS were found to be WE, Chl-E, and TAG. A minor amount of free Chl (less then 0.5% of the Chl-E fraction) was detected in MGS. No appreciable amounts of DAG and Cer were found in MGS. The second NP HPLC-MS method, capable of analyzing model mixtures of authentic phospholipids (e.g. phosphatidylglycerol, phosphatidylethanolamine, phosphatidic acid, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin) in submicrogram/mL concentrations, showed little or no presence of these species in the MGS samples. These observations suggest that MGS are a major source of the nonpolar lipids of the WE and Chl-E families for the tear film lipid layer (TFLL), but not of the previously reported phospholipid components of the TFLL.


Lipids HPLC Mass spectrometry Tear film lipid layer Human meibomian gland 



Atmospheric pressure chemical ionization


Atmospheric pressure ionization






Cholesteryl ester


Cholesteryl oleate




Diacyl glycerol


Dry eye syndrome


Electrospray ionization


Gas chromatography


n-Hexane/propan-2-ol (95:5, by vol) solvent mixture


n-Hexane/propan-2-ol/acetic acid (95:5:0.1, by vol) solvent mixture


High-performance liquid chromatography


Ion source collision induced dissociation


Meibomian gland secretions


Mass spectrometry


Nuclear magnetic resonance spectroscopy


Normal-phase HPLC


1-Palmitoyl-2-oleoyl-phosphatidic acid














Retention time (min)




Stearyl stearate


Triacyl glycerol


Tear film lipid layer




Wax ester


  1. 1.
    McCulley JP, Shine W (1997) A compositional based model for the tear film lipid layer. Trans Am Ophthalmol Soc 95:79–88; discussion 88–93PubMedGoogle Scholar
  2. 2.
    McCulley JP, Shine WE (1998) Tear film structure and dry eye. Contactologia 20:45–149Google Scholar
  3. 3.
    Tsubota K, Yamada M (1992) Tear evaporation from the ocular surface. Invest Ophthalmol Vis Sci 33:2942–2950PubMedGoogle Scholar
  4. 4.
    Ohashi Y, Gogru M, Tsubota K (2006) Laboratory findings in tear fluid analysis. Clin Chim Acta 369:17–28PubMedCrossRefGoogle Scholar
  5. 5.
    Mathers WD (1993) Ocular evaporation in meibomian gland dysfunction and dry eye. Ophthalmology 100:347–351PubMedGoogle Scholar
  6. 6.
    Mathers WD (2004) Evaporation from the ocular surface. Exp Eye Res 78:389–394PubMedCrossRefGoogle Scholar
  7. 7.
    Shine WE, McCulley JP (2000) Association of meibum oleic acid with meibomian seborrhea. Cornea 19:72–74PubMedCrossRefGoogle Scholar
  8. 8.
    Sullivan BD, Evans JE, Cermak JM, Krenzer KM, Dana MR, Sullivan DA (2002) Complete androgen insensitivity syndrome: effect on human meibomian gland secretions. Arch Ophthalmol 120:1689–1699PubMedGoogle Scholar
  9. 9.
    Ham BM, Jacob JT, Cole RB (2005) MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and solid ionic-crystal matrix. Anal Chem 77:4439–4447PubMedCrossRefGoogle Scholar
  10. 10.
    Schaumberg DA, Sullivan DA, Dana MR (2002) Epidemiology of dry eye syndrome. Adv Exp Med Biol 506(part B): 989–998PubMedGoogle Scholar
  11. 11.
    Goto E, Yagi Y, Matsumoto Y, Tsubota K (2002) Impaired functional visual acuity of dry eye patients. Am J Ophthalmol 133:181–186PubMedCrossRefGoogle Scholar
  12. 12.
    Goto E, Yagi Y, Kaido M, Matsumoto Y, Konomi K, Tsubota K (2003) Improved functional visual acuity after punctual occlusion in dry eye patients. Am J Ophthalmol 135:704–705PubMedCrossRefGoogle Scholar
  13. 13.
    Tiffany JM (1978) Individual variations in human meibomian lipid composition. Exp Eye Res 27:289–300PubMedCrossRefGoogle Scholar
  14. 14.
    Nicolaides N, Santos EC, Smith RE, Jester JV (1989) Meibomian gland dysfunction. III. Meibomian gland lipids. Invest Ophthalmol Vis Sci 30:946–951PubMedGoogle Scholar
  15. 15.
    Harvey DJ (1989) Identification by gas chromatography/mass spectrometry of long-chain fatty acids and alcohols from hamster meibomian glands using picolinyl and nicotinate derivatives. Biomed Chromatogr 3:251–254PubMedCrossRefGoogle Scholar
  16. 16.
    Shine WE, McCulley JP (1991) The role of cholesterol in chronic blepharitis. Invest Ophthalmol Vis Sci 32:2272–2280PubMedGoogle Scholar
  17. 17.
    McFadden WH, Bradford DC, Eglington G, Hajlbrahim SK, Nicolaides N (1979) Application of combined liquid chromatography/mass spectrometry (LC/MS): analysis of petroporphyrins and meibomian gland waxes. J Chromatogr Sci 17:518–522PubMedGoogle Scholar
  18. 18.
    Shine WE, McCulley JP (2003) Polar lipid in human meibomian gland secretions. Curr Eye Res 26:89–94PubMedCrossRefGoogle Scholar
  19. 19.
    Shine WE, McCulley JP (2004) Meibomianitis: Polar lipid abnormalities. Cornea 23:781–783PubMedCrossRefGoogle Scholar
  20. 20.
    Greiner JV, Glonek T, Korb DR, Leahy CD (1996) Meibomian gland phospholipids. Cur Eye Res 15:371–375Google Scholar
  21. 21.
    Nicolaides N, Santos EC (1985) The di- and triesters of the lipids of steer and human meibomian glands. Lipids 20:454–467PubMedCrossRefGoogle Scholar
  22. 22.
    Tiffany JM (1979) The meibomian lipids of the rabbit. I. Overall composition. Exp Eye Res 29:195–202PubMedCrossRefGoogle Scholar
  23. 23.
    Shine WE, McCulley JP (1993) Role of wax ester fatty alcohols in chronic blepharitis. Invest Ophthalmol Vis Sci 34:3515–3521PubMedGoogle Scholar
  24. 24.
    Sommer U, Herscovitz H, Welty FK, Costello CE (2006) LC-MS-based method for the qualitative and quantitative analysis of complex lipid mixtures. J Lipid Res 47:804–814PubMedCrossRefGoogle Scholar
  25. 25.
    Murphy RC (2002) Mass spectrometry of phospholipids: tables of molecular and product ions. Illuminati Press, Los AngelesGoogle Scholar
  26. 26.
    Mathers WD, Shields WJ, Sachdev M, Petroll WM, Jester JV (1991) Meibomian gland morphology and tear osmolarity: changes with Accutane therapy. Cornea 10:286–290PubMedCrossRefGoogle Scholar
  27. 27.
    Macri A, Pflugfelder S (2000) Correlation of the Schirmer 1 and fluorescein clearance tests with the severity of corneal epithelial and eyelid disease. Arch Ophthalmol 118:1632–1638PubMedGoogle Scholar
  28. 28.
    McCulley JP, Sciallis GF (1977) Meibomian keratoconjunctivitis. Am J Ophthalmol 84:788–793PubMedGoogle Scholar
  29. 29.
    Prydal JI, Artal P, Woon H, Campbell FW(1992) Study of human precorneal tear film thickness and structure using laser interferometry. Invest Ophthalmol Vis Sci 33:2006–2011PubMedGoogle Scholar
  30. 30.
    King-Smith PE, Fink BA, Fogt N, Nichols KK, Hill RM, Wilson GS (2000) The thickness of the human precorneal tear film: evidence from reflection spectra. Invest. Ophthalmol Vis Sci 41:3348–3359PubMedGoogle Scholar
  31. 31.
    Doane MG, Lee ME (1998) Tear film interferometry as a diagnostic tool for evaluating normal and dry-eye tear film. Adv Exp Med Biol 438:297–303PubMedGoogle Scholar
  32. 32.
    Stimmel BF, King CG (1934) Preparation and properties of β-monoglycerides. J Am Chem Soc 56:1724–1725CrossRefGoogle Scholar
  33. 33.
    Doerschuk AP (1952) Acyl migrations in partially acylated, polyhydroxylic systems. J Am Chem Soc 74:4202–4203CrossRefGoogle Scholar
  34. 34.
    Ham BM, Cole RB, Jacob JT (2006) Identification and comparison of the polar phospholipids in normal and dry eye rabbit tears by MALDI-TOF mass spectrometry. Invest Ophthalmol Vis Sci 47:3330–3338PubMedCrossRefGoogle Scholar
  35. 35.
    Moreau RA, Kohout K, Singh V (2002) Temperature-enhanced alumina HPLC method for the analysis of wax esters, sterol esters, and methyl esters. Lipids 37:1201–1204PubMedCrossRefGoogle Scholar
  36. 36.
    Sullivan BD, Evans JE, Krenzer KL, Dana MR, Sullivan DA (2000) Impact of antiandrogen treatment on the fatty acid profile of neutral lipids in human meibomian gland secretions. J Clin Endocrinol Metabol 85:4866–4873CrossRefGoogle Scholar
  37. 37.
    Krenzer KL, Dana MR, Ullman MD, Cermak JM, Tolls DB, Evans JE, Sullivan DA (2000) Effect of androgen deficiency on the human meibomian gland and ocular surface. J Clin Endocrinol Metabol 85:4874–4882CrossRefGoogle Scholar
  38. 38.
    Barabino S, Reza Dana M (2004) Animal models of dry eye: a critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci 45:1641–1646PubMedCrossRefGoogle Scholar
  39. 39.
    Greiner JV, Glonek T, Korb DR, Hearn SL, Whalen AC, Esway JE, Leahy CD (1998) Effect of meibomian gland occlusion on tear film layer thickness. In: Sullivan DA, Dartt DA, Meneray MA (eds) Lacrimal gland, tear film, and dry eye syndromes 2. Plenum Press, New York, LondonGoogle Scholar
  40. 40.
    Cenedella RJ, Fleschner CR (1989) Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development. J Lipid Res 30:1079–1084PubMedGoogle Scholar

Copyright information

© AOCS 2007

Authors and Affiliations

  • Igor A. Butovich
    • 1
  • Eduardo Uchiyama
    • 1
  • Mario A. Di Pascuale
    • 1
  • James P. McCulley
    • 1
  1. 1.Department of OphthalmologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations