Lipids

, 42:229

Inward Translocation of the Phospholipid Analogue Miltefosine across Caco-2 Cell Membranes Exhibits Characteristics of a Carrier-mediated Process

  • Cécile Ménez
  • Marion Buyse
  • Robert Farinotti
  • Gillian Barratt
Original Article

Abstract

Miltefosine (hexadecylphosphocholine, HePC) is the first effective oral agent for the treatment of visceral leishmaniasis. The characteristics of HePC incorporation into the human intestinal epithelial cell line Caco-2 were investigated in order to understand its oral absorption mechanism. The results provide evidence for the involvement of a carrier-mediated mechanism, since the association of HePC at the apical pole of Caco-2 cells was (1) saturable as a function of time with a rapid initial incorporation over 5 min followed by a more gradual increase; (2) saturable as a function of concentration over the range studied (2–200 μM) with a saturable component which followed Michaelis–Menten kinetics (apparent Km 15.7 μmol/L, Vmax 39.2 nmol/mg protein/h) and a nonspecific diffusion component; (3) partially inhibited by low temperature and ATP depletion, indicating the temperature and energy-dependence of the uptake process. Moreover, we demonstrated, by an albumin back-extraction method, that HePC is internalized via translocation from the outer to the inner leaflet of the plasma membrane and that HePC may preferentially diffuse through intact raft microdomains. In conclusion, our results suggest that incorporation of HePC at the apical membrane of Caco-2 cells may occur through a passive diffusion followed by a translocation in the inner membrane leaflet through an active carrier-mediated mechanism.

Keywords

Miltefosine Hexadecylphosphocholine Caco-2 Cellular membrane incorporation Intestinal absorption Translocation 

References

  1. 1.
    Sundar S, Makharia A, More DK, Agrawal G, Voss A, Fischer C, Bachmann P, Murray HW (2000) Short-course of oral miltefosine for treatment of visceral leishmaniasis. Clin Infect Dis 31:1110–1113PubMedCrossRefGoogle Scholar
  2. 2.
    Sundar S, Jha TK, Thakur CP, Engel J, Sindermann H, Fischer C, Junge K, Bryceson A, Berman J (2002) Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med 347:1739–1746PubMedCrossRefGoogle Scholar
  3. 3.
    Arnold B, Reuther R, Weltzien HU (1978) Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice. Biochim Biophys Acta 530:47–55PubMedGoogle Scholar
  4. 4.
    Geilen CC, Wieder T, Haase A, Reutter W, Morre DM, Morre DJ (1994) Uptake, subcellular distribution and metabolism of the phospholipid analogue hexadecylphosphocholine in MDCK cells. Biochim Biophys Acta 1211:14–22PubMedGoogle Scholar
  5. 5.
    Hoffman DR, Hoffman LH, Snyder F (1986) Cytotoxicity and metabolism of alkyl phospholipid analogues in neoplastic cells. Cancer Res 46:5803–5809PubMedGoogle Scholar
  6. 6.
    Van Blitterswijk WJ, Hilkmann H, Storme GA (1987) Accumulation of an alkyl lysophospholipid in tumor cell membranes affects membrane fluidity and tumor cell invasion. Lipids 22:P820–P823CrossRefGoogle Scholar
  7. 7.
    Dive C, Watson JV, Workman P (1991) Multiparametric flow cytometry of the modulation of tumor cell membrane permeability by developmental antitumor ether lipid SRI 62-834 in EMT6 mouse mammary tumor and HL-60 human promyelocytic leukemia cells. Cancer Res 51:799–806PubMedGoogle Scholar
  8. 8.
    Grunicke HH (1991) The cell membrane as a target for cancer chemotherapy. Eur J Cancer 27:281–284PubMedCrossRefGoogle Scholar
  9. 9.
    Modolell M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res 39:4681–4686PubMedGoogle Scholar
  10. 10.
    Uberall F, Oberhuber H, Maly K, Zaknun J, Demuth L, Grunicke HH (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res 51:807–812PubMedGoogle Scholar
  11. 11.
    Powis G, Seewald MJ, Gratas C, Melder D, Riebow J, Modest EJ (1992) Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res 52:2835–2840PubMedGoogle Scholar
  12. 12.
    Kelley EE, Modest EJ, Burns CP (1993) Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem Pharmacol 45:2435–2439PubMedCrossRefGoogle Scholar
  13. 13.
    Bazill GW, Dexter TM (1990) Role of endocytosis in the action of ether lipids on WEHI-3B, HL60, and FDCP-mix A4 cells. Cancer Res 50:7505–7512PubMedGoogle Scholar
  14. 14.
    Hanson PK, Malone L, Birchmore J, Nichols J (2003) Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem 278:36041–36050PubMedCrossRefGoogle Scholar
  15. 15.
    Perez-Victoria FJ, Gamarro F, Ouellette M, Castanys S (2003) Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem 278:49965–49971PubMedCrossRefGoogle Scholar
  16. 16.
    Perez-Victoria FJ, Castanys S, Gamarro F (2003) Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403PubMedCrossRefGoogle Scholar
  17. 17.
    Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749PubMedGoogle Scholar
  18. 18.
    Geilen CC, Samson A, Wieder T, Wild H, Reutter W (1992) Synthesis of hexadecylphospho[methyl-14C]-choline. J Labelled Compd Radiopharm 31:1071–1076CrossRefGoogle Scholar
  19. 19.
    Eibl H, Woolley P (1988) A general synthetic method for enantiomerically pure ester and ether lysophospholipids. Chem Phys Lipids 47:63–68CrossRefGoogle Scholar
  20. 20.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  21. 21.
    Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69PubMedCrossRefGoogle Scholar
  22. 22.
    Ménez C, Buyse M, Chacun H, Farinotti R, Barratt G (2006) Modulation of intestinal barrier properties by miltefosine. Biochem Pharmacol 71:486–496PubMedCrossRefGoogle Scholar
  23. 23.
    Diomede L, Colotta F, Piovani B, Re F, Modest EJ, Salmona M (1993) Induction of apoptosis in human leukemic cells by the ether lipid 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine. A possible basis for its selective action. Int J Cancer 53:124–130PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia-Garcia E, Andrieux K, Gil S, Kim HR, Le Doan T, Desmaele D, d’Angelo J, Taran F, Georgin D, Couvreur P (2005) A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int J Pharm 298:310–314PubMedCrossRefGoogle Scholar
  25. 25.
    Galdiero M, Vitiello M, D’Isanto M, Peluso L (2001) Induction of tyrosine phosphorylated proteins in THP-1 cells by Salmonella typhimurium, Pasteurella haemolytica and Haemophilus influenzae porins. FEMS Immunol Med Microbiol 31:121–130PubMedCrossRefGoogle Scholar
  26. 26.
    LeDoan T, Etore F, Tenu JP, Letourneux Y, Agrawal S (1999) Cell binding, uptake and cytosolic partition of HIV anti-gag phosphodiester oligonucleotides 3′-linked to cholesterol derivatives in macrophages. Bioorg Med Chem 7:2263–2269PubMedCrossRefGoogle Scholar
  27. 27.
    Clarke BL, Weigel PH (1985) Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. ATP depletion blocks receptor recycling but not a single round of endocytosis. J Biol Chem 260:128–133PubMedGoogle Scholar
  28. 28.
    Mohandas N, Wyatt J, Mel SF, Rossi ME, Shohet SB (1982) Lipid translocation across the human erythrocyte membrane. Regulatory factors. J Biol Chem 257:6537–6543PubMedGoogle Scholar
  29. 29.
    Ménez C, Buyse M, Dugave C, Farinotti R, Barratt G (2006) Intestinal absorption of miltefosine: contribution of passive paracellular transport. Pharm Res (in press). http://dx.doi.org/10.1007/s11095-006-9170-7Google Scholar
  30. 30.
    Berkovic D, Fleer EA, Eibl H, Unger C (1992) Effects of hexadecylphosphocholine on cellular function. Prog Exp Tumor Res 34:59–68PubMedGoogle Scholar
  31. 31.
    Wolkers WF, Looper SA, Fontanilla RA, Tsvetkova NM, Tablin F, Crowe JH (2003) Temperature dependence of fluid phase endocytosis coincides with membrane properties of pig platelets. Biochim Biophys Acta 1612:154–163PubMedCrossRefGoogle Scholar
  32. 32.
    Steinman RM, Silver JM, Cohn ZA (1974) Pinocytosis in fibroblasts. Quantitative studies in vitro. J Cell Biol 63:949–969PubMedCrossRefGoogle Scholar
  33. 33.
    Trotter PJ, Storch J (1991) Fatty acid uptake and metabolism in a human intestinal cell line (Caco-2): comparison of apical and basolateral incubation. J Lipid Res 32:293–304PubMedGoogle Scholar
  34. 34.
    Chabot MC, Wykle RL, Modest EJ, Daniel LW (1989) Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Cancer Res 49:4441–4445PubMedGoogle Scholar
  35. 35.
    Diomede L, Bizzi A, Magistrelli A, Modest EJ, Salmona M, Noseda A (1990) Role of cell cholesterol in modulating antineoplastic ether lipid uptake, membrane effects and cytotoxicity. Int J Cancer 46:341–346PubMedCrossRefGoogle Scholar
  36. 36.
    Heesbeen EC, Rijksen G, van Heugten HG, Verdonck LF (1995) Influence of serum levels on leukemic cell destruction by the ether lipid ET-18-OCH3. Leuk Res 19:417–425PubMedCrossRefGoogle Scholar
  37. 37.
    Heesbeen EC, Verdonck LF, Haagmans M, van Heugten HG, Staal GE, Rijksen G (1993) Adsorption and uptake of the alkyllysophospholipid ET-18-OCH3 by HL-60 cells during induction of differentiation by dimethylsulfoxide. Leuk Res 17:143–148PubMedCrossRefGoogle Scholar
  38. 38.
    Sundar S, Rosenkaimer F, Makharia MK, Goyal AK, Mandal AK, Voss A, Hilgard P, Murray HW (1998) Trial of oral miltefosine for visceral leishmaniasis. Lancet 352:1821–1823PubMedCrossRefGoogle Scholar
  39. 39.
    Murota K, Storch J (2005) Uptake of micellar long-chain fatty acid and sn-2-monoacylglycerol into human intestinal Caco-2 cells exhibits characteristics of protein-mediated transport. J Nutr 135:1626–1630PubMedGoogle Scholar
  40. 40.
    Trotter PJ, Ho SY, Storch J (1996) Fatty acid uptake by Caco-2 human intestinal cells. J Lipid Res 37:336–346PubMedGoogle Scholar
  41. 41.
    Fleer EA, Berkovic D, Eibl H, Unger C (1993) Investigations on the cellular uptake of hexadecylphosphocholine. Lipids 28:731–736PubMedCrossRefGoogle Scholar
  42. 42.
    Small GW, Strum JC, Daniel LW (1997) Characterization of an HL-60 cell variant resistant to the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Lipids 32:715–723PubMedCrossRefGoogle Scholar
  43. 43.
    Vogel U, Sandvig K, van Deurs B (1998) Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J Cell Sci 111(Pt 6):825–832PubMedGoogle Scholar
  44. 44.
    Storch J, Munder PG (1987) Increased membrane permeability for an antitumoral alkyl lysophospholipid in sensitive tumor cells. Lipids 22:813–819PubMedCrossRefGoogle Scholar
  45. 45.
    Mollinedo F, Fernandez-Luna JL, Gajate C, Martin-Martin B, Benito A, Martinez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 57:1320–1328PubMedGoogle Scholar
  46. 46.
    Zoeller RA, Layne MD, Modest EJ (1995) Animal cell mutants unable to take up biologically active glycerophospholipids. J Lipid Res 36:1866–1875PubMedGoogle Scholar
  47. 47.
    Fleer EA, Berkovic D, Unger C, Eibl H (1992) Cellular uptake and metabolic fate of hexadecylphosphocholine. Prog Exp Tumor Res 34:33–46PubMedGoogle Scholar
  48. 48.
    Kotting J, Marschner NW, Neumuller W, Unger C, Eibl H (1992) Hexadecylphosphocholine and octadecyl-methyl-glycero-3-phosphocholine: a comparison of hemolytic activity, serum binding and tissue distribution. Prog Exp Tumor Res 34:131–142PubMedGoogle Scholar
  49. 49.
    Santa-Rita RM, Santos Barbosa H, Meirelles MN, de Castro SL (2000) Effect of the alkyl-lysophospholipids on the proliferation and differentiation of Trypanosoma cruzi. Acta Trop 75:219–228PubMedCrossRefGoogle Scholar
  50. 50.
    Ho SY, Storch J (2001) Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells. Am J Physiol Cell Physiol 281:C1106–1117PubMedGoogle Scholar
  51. 51.
    Rey Gomez-Serranillos I, Minones J Jr, Dynarowicz-Latka P, Minones J, Iribarnegaray E (2004) Miltefosine-Cholesterol interactions: a monolayer study. Langmuir 20:928–933PubMedCrossRefGoogle Scholar
  52. 52.
    Van der Luit AH, Budde M, Ruurs P, Verheij M, Van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277:39541–39547PubMedCrossRefGoogle Scholar
  53. 53.
    Voelker DR (1990) Lipid transport pathways in mammalian cells. Experientia 46:569–579PubMedCrossRefGoogle Scholar
  54. 54.
    Pomorski T, Herrmann A, Muller P, van Meer G, Burger K (1999) Protein-mediated inward translocation of phospholipids occurs in both the apical and basolateral plasma membrane domains of epithelial cells. Biochemistry 38:142–150PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2007

Authors and Affiliations

  • Cécile Ménez
    • 1
  • Marion Buyse
    • 2
  • Robert Farinotti
    • 2
  • Gillian Barratt
    • 1
  1. 1.Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612 Faculté de PharmacieUniv. Paris-Sud 11Châtenay-Malabry, CedexFrance
  2. 2.Laboratoire de Pharmacie Clinique, UPRES 2706 Faculté de PharmacieUniv. Paris-Sud 11Châtenay-MalabryFrance

Personalised recommendations