Lipids

, 41:347

Effect of diacylglycerol on the development of impaired glucose tolerance in sucrose-fed rats

  • Shinichi Meguro
  • Noriko Osaki
  • Noboru Matsuo
  • Ichiro Tokimitsu
Articles

Abstract

The effects of DAG oil and TAG oil on impaired glucose tolerance in rats that were fed a diet containing high levels of sucrose were compared. Male Wistar rats (8 wk old and 32 wk old) were fed either high-sucrose (57.5% sucrose w/w) or control diets containing either 10% (w/w) DAG or TAG oil with a similar FA composition for 48 wk in 8-wk-old rats and for 24 wk in 32-wk-old rats. Plasma lipids, the size of the islets of Langerhans, and insulin, glucose, and adipocytokine levels were measured. An oral glucose tolerance test (OGTT) was carried out during the study period. For rats in both age groups that were fed a high-sucrose diet, the DAG oil group had lower plasma glucose and insulin response in an OGTT, and lower homeostasis model assessment-R levels, than the TAG oil group. Furthermore, in 8-wk-old rats that were fed a high-sucrose diet, the DAG oil group accumulated less visceral fat and showed decreases of plasma adiponectin and suppressed increases of plasma insulin, leptin, and the size of islet of Langerhans compared with the TAG oil group. No difference in the OGTT was found between the DAG and TAG oil groups in either age group of rats fed a control diet. In conclusion, these results suggest that DAG oil ingestion prevents the high-sucrose-diet-induced development of impaired glucose tolerance compared with TAG oil ingestion.

Abbreviations

EIA

enzyme-linked immunosorbent assay

HbA1c

glycohemoglobin A1c

HOMA-R

homeostasis model assessment-R

NEFA

nonesterified FA

OGTT

oral glucose tolerance test

OLETF

Otsuka Long-Evans Tokushima Fatty

SD

Sprague-Dawley

References

  1. 1.
    Klein, S., Sheard, N.F., Pi-Sunyer, X., Daly, A., Wylie-Rosett, J., Kulkarni, K., and Clark, N.G. (2004) Weight Management Through Lifestyle Modification for the Prevention and Management of Type 2 Diabetes: Rationale and Strategies. A Statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition, Am. J. Clin. Nutr. 80, 257–263.PubMedGoogle Scholar
  2. 2.
    Younis, N., Soran, H., and Farook, S. (2004) The Prevention of Type 2 Diabetes Mellitus: Recent Advances, QJM, 97, 451–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Hartz, A.J., Rupley, D.C., Jr., Kalkhoff, R.D., and Rimm, A.A. (1983) Relationship of Obesity to Diabetes: Influence of Obesity Level and Body Fat Distribution, Prev. Med. 12, 351–357.PubMedCrossRefGoogle Scholar
  4. 4.
    Tada, N., and Yoshida, H. (2003) Diacylglycerol on Lipid Metabolism, Curr. Opin. Lipidol. 14, 29–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Tada, N. (2004) Physiological Actions of Diacylglycerol Outcome, Curr. Opin. Clin. Nutr. Metab. Care 7, 145–149.PubMedCrossRefGoogle Scholar
  6. 6.
    Taguchi, H., Nagao, T., Watanabe, H., Onizawa, K., Matsuo, N., Tokimitsu, I., and Itakura, H. (2001) Energy Value and Digestibility of Dietary Oil Containing Mainly 1,3-Diacylglycerol Are Similar to Those of Triacylglycerol, Lipids 36, 379–382.PubMedCrossRefGoogle Scholar
  7. 7.
    Nagao, T., Watanabe, H., Goto, N., Onizawa, K., Taguchi, H., Matsuo, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men in a Double-Blind Controlled Trial, J. Nutr. 130, 792–797.PubMedGoogle Scholar
  8. 8.
    Maki, K.C., Davidson, M.H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D.M., Dicklin, M.R., Foster, G.S., Ingram, K.A., Anderson, B.D., Frost, S.D., and Bell, M. (2002) Consumption of Diacylglycerol Oil as Part of a Reduced-Energy Diet Enhances Loss of Body Weight and Fat in Comparison with Consumption of a Triacylglycerol Control Oil, Am. J. Clin. Nutr. 76, 1230–1236.PubMedGoogle Scholar
  9. 9.
    Murase, T., Mizuno, T., Omachi, T., Onizawa, K., Komine, Y., Kondo, H., Hase, T., and Tokimitsu, I. (2001) Dietary Diacylglycerol Suppresses High Fat and High Sucrose Diet-Induced Body Fat Accumulation in C57BL/6J Mice, J. Lipid Res. 42, 372–378.PubMedGoogle Scholar
  10. 10.
    Murase, T., Aoki, M., Wakisaka, T., Hase, T., and Tokimitsu, I. (2002) Anti-obesity Effect of Dietary Diacylglycerol in C57BL/6J Mice: Dietary Diacylglycerol Stimulates Intestinal Lipid Metabolism, J. Lipid Res. 43, 1312–1319.PubMedGoogle Scholar
  11. 11.
    Meng, X., Zou, D., Shi, Z., Duan, Z., and Mao, Z. (2004) Dietary Diacylglycerol Prevents High-Fat Diet-Induced Lipid Accumulation in Rat Liver and Abdominal Adipose Tissue, Lipids 39, 37–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Kondo, H., Hase, T., Murase, T., and Tokimitsu, I. (2003) Digestion and Assimilation Features of Dietary DAG in the Rat Small Intestine, Lipids 38, 25–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Watanabe, H., Onizawa, K., Taguchi, H., Kobori, M., Chiba, H., Naito, S., Matsuo, N., Yasukawa, T., Hattori, M., and Shimasaki, H. (1997) Nutritional Characterization of Diacylglycerols in Rats, J. Jpn. Oil Chem. Soc. 46, 301–307.Google Scholar
  14. 14.
    Murata, M., Ide, T., and Hara, K. (1994) Alteration by Diacylglycerol of the Transport and Fatty Acid Composition of Lymph Chylomicron in Rats, Biosci. Biotech. Biochem. 58, 1416–1419.CrossRefGoogle Scholar
  15. 15.
    Taguchi, H., Watanabe, H., Onizawa, K., Nagao, T., Gotoh, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Double-Blind Controlled Study on the Effects of Diacylglycerol on Postprandial Serum and Chylomicron Triacylglycerol Responses in Healthy Humans, J. Am. Coll. Nutr. 19, 789–796.PubMedGoogle Scholar
  16. 16.
    Tada, N., Watanabe, H., Matsuo, N., Tokimitsu, I., and Okazaki, M. (2001) Dynamics of Postprandial Remmant-Lipoprotein Particles in Serum After Loading of Diacylglycerols. Clin. Chem. Acta 311, 109–117.CrossRefGoogle Scholar
  17. 17.
    Yamamoto, K., Asakawa, H., Tokunaga, K., Watanabe, H., Matsuo, N., Tokimitsu, I., and Yagi, N. (2001) Long-Term Ingestion of Dietary Diacylglycerol Lowers Serum Triacylglycerol in Type II Diabetic Patients with Hypertriglyceridemia, J. Nutr. 131, 3204–3207.PubMedGoogle Scholar
  18. 18.
    Mori, Y., Nakagiri, H., Kondo, H., Murase, T., Tokimitsu, I., and Tajima, N. (2005) Dietary Diacylglycerol Reduces Postprandial Hyperlipidemia and Ameliorates Glucose Intolerance in Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Nutrition 21, 933–939.PubMedGoogle Scholar
  19. 19.
    Toida, S., Takahashi, M., Shimizu, H., Sato, N., Shimomura, Y., and Kobayashi, I. (1996) Effect of High Sucrose Feeding on Fat Accumulation in the Male Wistar Rat, Obes. Res. 4, 561–568.PubMedGoogle Scholar
  20. 20.
    Nara, M., Takahashi, M., Kanda, T., Shimomura, Y., and Kobayashi, I. (1997) Running Exercise Improves Metabolic Abnormalities and Fat Accumulation in Sucrose-Induced Insulin-Resistant Rats, Obes. Res. 5, 348–353.PubMedGoogle Scholar
  21. 21.
    Chicco, A., D'Alessandro, M.E., Karabatas, L., Pastorale, C., Basabe, J.C., and Lombardo, Y.B. (2003) Muscle Lipid Metabolism and Insulin Secretion Are Altered in Insulin-Resistant Rats Fed a High Sucrose Diet, J. Nutr. 133, 127–133.PubMedGoogle Scholar
  22. 22.
    Soria, A., D'Alessandro, M.E., and Lombardo, Y.B. (2001) Duration of Feeding on a Sucrose-Rich Diet Determines Metabolic and Morphological Changes in Rat Adipocytes, Appl. Physiol. 91, 2109–2116.Google Scholar
  23. 23.
    Hallfrisch, J., Lazar, F., Jorgensen, C., and Reiser, S. (1979) Insulin and Glucose Responses in Rats Fed Sucrose or Starch, Am. J. Clin. Nutr. 32, 787–793.PubMedGoogle Scholar
  24. 24.
    Gutman, R.A., Basilico, M.Z., Bernal, C.A., Chicco, A., and Lombardo, Y.B. (1987) Long-Term Hypertriglyceridemia and Glucose Intolerance in Rats Fed Chronically and Isocaloric Sucrose-Rich Diet, Metabolism 36, 1013–1020.PubMedCrossRefGoogle Scholar
  25. 25.
    Lombardo, Y.B., Drago, S., Chicco, A., Fainstein-Day, P., Gutman, R., Gagliardino, J.J., and GomezDumm, C.L. (1996) Long-Term Administration of a Sucrose-Rich Diet to Normal Rats: Relationship Between Metabolic and Hormonal Profiles and Morphological Changes in the Endocrine Pancreas, Metabolism 45, 1527–1532.PubMedCrossRefGoogle Scholar
  26. 26.
    Davidson, M.B. (1979) The Effect of Aging on Carbohydrate Metabolism: A Review of the English Literature and a Practical Approach to the Diagnosis of Diabetes Mellitus in the Elderly, Metabolism 28, 688–705.PubMedCrossRefGoogle Scholar
  27. 27.
    Rowe, J.W., Minaker, K.L., Pallotta, J.A., and Flier, J.S. (1983) Characterization of the Insulin Resistance of Aging, J. Clin. Invest. 71, 1581–1587.PubMedGoogle Scholar
  28. 28.
    Huge-Jensen, B., Galluzzo, D.R., and Jensen, R.G. (1988) Studies on Free and Immobilized Lipases from Mucormiehei, J. Am. Oil Chem. Soc. 65, 905–910.CrossRefGoogle Scholar
  29. 29.
    Gomori, G. (1950) A New Stain for Elastic Tissue, Am. J. Clin. Pathol. 20, 665.PubMedGoogle Scholar
  30. 30.
    Bjorntorp, P. (1988) Abdominal Obesity and the Development of Noninsulin-Dependent Diabetes Mellitus, Diabetes Metab. Rev. 4, 615–622.PubMedCrossRefGoogle Scholar
  31. 31.
    Pedersen, S.B., Borglum, J.D., Schmitz, O., Bak, J.F., Sorensen, N.S., and Richelsen, B. (1993) Abdominal Obesity Is Associated with Insulin Resistance and Reduced Glycogen Synthetase Activity in Skeletal Muscle, Metabolism 42, 998–1005.PubMedCrossRefGoogle Scholar
  32. 32.
    Matsuzawa, Y., Shimomura, I., Nakamura, T., Keno, Y., Kotani, K., and Tokunaga, K. (1995) Pathophysiology and Pathogenesis of Visceral Fat Obesity, Obes. Res. 2 (Suppl.), 187S-194S.Google Scholar
  33. 33.
    Muzumdar, R., Ma, X., Atzmon, G., Vuguin, P., Yang, X., and Barzilai, N. (2004) Decrease in Glucose-Stimulated Insulin Secretion with Aging Is Independent of Insulin Action, Diabetes 53, 441–446.PubMedGoogle Scholar
  34. 34.
    Iwai, H., Ohno, Y., and Aoki, N. (2003) The Effect of Leptin, Tumor Necrosis Factor-Alpha (TNF-Alpha), and Nitric Oxide (NO) Production on Insulin Resistance in Otsuka Long-Evans Fatty Rats, Endocr. J. 50, 673–680.PubMedCrossRefGoogle Scholar
  35. 35.
    Addy, C.L., Gavrila, A., Tsiodras, S., Brodovicz, K., Karchmer, A.W., and Mantzoros, C.S. (2003) Hypoadiponectinemia Is Associated with Insulin Resistance, Hypertriglyceridemia, and Fat Redistribution in Human Immunodeficiency Virus-Infected Patients Treated with Highly Active Antiretroviral Therapy, J. Clin. Endocrinol. Metab. 88, 627–636.PubMedCrossRefGoogle Scholar
  36. 36.
    Maehata, E., Yano, M., Shiba, T., Yamakado, M., Inoue, M., and Suzuki, S. (2002) Insulin Resistance Index (HOMA-R Method), Nippon Rinsho 8 (Suppl.), 341–350Google Scholar
  37. 37.
    Spiegelman, B.M., and Flier, J.S. (1996) Adrpogenesis and Obesity: Rounding Out the Big Picture, Cell 87, 377–389.PubMedCrossRefGoogle Scholar
  38. 38.
    Fink, R.I., Kolterman, O.G., Griffin, J., and Olefsky, J.M. (1983) Mechanisms of Insulin Resistance in Aging, J. Clin. Invest. 71, 1523–1535.PubMedCrossRefGoogle Scholar
  39. 39.
    Matthaei, S., Benecke, H., Klein, H.H., Hamann, A., Kreymann, G., and Greten, H. (1990) Potential Mechanism of Insulin Resistance in Ageing: Impaired Insulin-Stimulated glucose Transport due to a Depletion of the Intracellular Pool of Glucose Transporters in Fischer Rat Adipocytes, J. Endocrinol. 126, 99–107.PubMedCrossRefGoogle Scholar
  40. 40.
    Murata, M., Ide, T., and Hara, K (1997) Reciprocal Responses to Dietary Diacylglycerol of Hepatic Enzymes of Fatty Acid Synthesis and Oxidation in the Rat, Brit. J. Nutr. 77, 107–121.PubMedCrossRefGoogle Scholar
  41. 41.
    Hotta, K., Funahashi, T., Bodkin, N.L., Ortmeyer, H.K., Arita, Y., Hansen, B.C., and Matsuzawa, Y. (2001) Circulating Concentrations of the Adipocyte Protein Adiponectin Are Decreased in Parallel with Reduced Insulin Sensitivity During the Progression to Type 2 Diabetes in Rhesus Monkeys, Diabetes 50, 1126–1133.PubMedGoogle Scholar
  42. 42.
    Lindsay, R.S., Funahashi, T., Hanson, R.L., Matsuzawa, Y., Tanaka, S., Tataranni, P.A., and Knowlwe, W.C. (2002) Adiponectin and Development of Type 2 Diabetes in the Pima Indian Population, Lancet 360, 57–58.PubMedCrossRefGoogle Scholar
  43. 43.
    Ryo, M., Nakamura, T., Kihara, S., Kumada, M., Shibazaki, S., Takahashi, M., Nagai, M., and Matsuzawa, Y. (2004) Adiponectin as a Biomarker of the Metabolic Syndrome, Circ. J. 68, 975–981.PubMedCrossRefGoogle Scholar
  44. 44.
    Moller, D.E., and Kaufman, K.D. (2005) Metabolic Syndrome: A Clinical and Molecular Perspective, Annu. Rev. Med. 56, 45–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B.B., and Kadowaki, T. (2002) Adiponectin Stimulates Glucose Utilization and Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase, Nat. Med. 8, 1288–1295.PubMedCrossRefGoogle Scholar
  46. 46.
    Havel, P.J. (2004) Update on Adipocyte Hormones: Regulation of Energy Balance and Carbohydrate/Lipid Metabolism, Diabetes 53, S143-S151.PubMedGoogle Scholar
  47. 47.
    Fruebis, J., Tsao, T.S., Javorschi, S., Ebbets-Reed, D., Erickson, M.R., Yen, F.T., Bihain, B.E., and Lodish, H.F. (2001) Proteolytic Cleavage Product of 30-kDa Adipocyte Complement-Related Protein Increases Fatty Acid Oxidation in Muscle and Causes Weight Loss in Mice, Proc. Natl. Acad. Sci. USA 98, 2005–2010.PubMedCrossRefGoogle Scholar
  48. 48.
    Huo, Y., Winters, W.D., and Yao, D.L. (2003) Prevention of Diet-Induced Type 2 Diabetes in the C57BL/6J Mouse Model by an Antidiabetic Herbal Formula, Phytother. Res. 17, 48–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Ikeda, H., Shino, A., Matsuo, T., Iwatsuka, H., and Suzuoki, Z. (1981) A New Genetically Obese-Hyperglycemic Rat (Wistar Fatty), Diabetes 30, 1045–1050.PubMedGoogle Scholar
  50. 50.
    Sugimoto, T., Kimura, T., Fukuda, H., and Iritani, N. (2003) Comparisons of Glucose and Lipid Metabolism in Rats Fed Diacylglycerol and Triacylglycerol Oils, J. Nutr. Sci. Vitaminol. (Tokyo) 49, 47–55.Google Scholar
  51. 51.
    Sugimoto, T., Fukuda, H., Kimura, T., and Iritani, N. (2003) Dietary Diacylglycerol-Rich Oil Stimulation of Glucose Intolerance in Genetically Obese Rats, J. Nutr. Sci. Vitaminol. (Tokyo) 49, 139–144.Google Scholar

Copyright information

© AOCS Press 2006

Authors and Affiliations

  • Shinichi Meguro
    • 1
  • Noriko Osaki
    • 1
  • Noboru Matsuo
    • 1
  • Ichiro Tokimitsu
    • 1
  1. 1.Biological Science LaboratoriesKao CorporationTochigiJapan

Personalised recommendations