, Volume 41, Issue 11, pp 1017–1027 | Cite as

Characterization of scavenger receptor class B, type I in Atlantic salmon (Salmo salar L.)

  • E. J. Kleveland
  • B. L. Syvertsen
  • B. Ruyter
  • A. Vegusdal
  • S. M. Jørgensen
  • T. Gjøen


The scavenger receptor class B, type I (SR-BI) is an important player in regulation of mammalian lipid homeostasis. We therefore wanted to study this receptor in Atlantic salmon (Salmo salar L.), which requires a diet with particular high lipid content. We have for the first time cloned and characterized SR-BI from a salmonid fish. The predicted 494 amino acid protein contained two transmembrane domains, several putative N-glycosylation sites, and showed 72% sequence identity with the predicted homolog from zebrafish. SR-BI expression was analyzed by reverse transcription Real-Time PCR in several tissues, and a high relative expression in salmon midgut was detected, which may suggest that SR-BI has a role in uptake of lipids from the diet. We also expressed a construct of salmon myc-tagged SR-BI in salmon TO cells and HeLa cells, which gave a protein of approximately 80 kDa on reducing SDS-PAGE using an antibody against the myc-epitope. Immunofluorescence microscopy analyses of the salmon SR-BI protein in transiently transfected HeLa cells revealed staining in the cell periphery and in some intracellular membranes, but not in the nucleus, which indicated that the salmon protein may be a functional membrane protein. We also observed a high degree of co-localization using an anti-peptide SR-BI antiserum. We found that 20 μg mL−1 insulin up-regulated the SR-BI mRNA levels in primary cultures of salmon hepatocytes relative to untreated cells. Oleic acid, EPA, DHA, or dexamethasone did not affect the relative expression of SR-BI in this liver model system. In conclusion, the salmon SR-BI cDNA encoded a protein with several features common to those of mammalian species. SR-BI gene expression was high in the intestine, which leads us to propose that SR-BI may contribute to the uptake of lipids from the diet.



amino acid




bovine serum albumin


CD36 and LIMPII analogous-1






docosahexaenoic acid


elongation factor 1 alpha


eicosapentaenoic acid


fatty acid


fetal bovine serum






high-density lipoprotein




head kidney






low-density lipoprotein






oleic acid


open reading frame


phosphate buffered saline


peroxisome proliferator-activated receptor


polyunsaturated FA


rapid amplification of cDNA ends


relative expression software tool




scavenger receptor class B, type I/II/III


sodium dodecyl sulfate polyacrylamide gel electrophoresis




untranslated region


very low-density lipoprotein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rajapaksha, W.R., McBride, M., Robertson, L., and O’Shaughnessy, P.J. (1997) Sequence of the Bovine HDL-Receptor (SR-BI) cDNA and Changes in Receptor mRNA Expression During Granulosa Cell Luteinization in Vivo and Vitro. Mol. Cell. Endocrinol. 134, 59–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim, J.G., Vallet, J.L., Nonneman, D., and Christenson, R.K. (2004) Molecular Cloning and Endometrial Expression of Porcine High Density Lipoprotein Receptor SR-BI During the Estrous Cycle and Early Pregnancy. Mol. Cell Endocrinol. 222, 105–112.PubMedCrossRefGoogle Scholar
  3. 3.
    Rhainds, D. and Brissette, L. (2004) The Role of Scavenger Receptor Class B Type I (SR-BI) in: Lipid Trafficking: Defining the Rules for Lipid Traders. Int. J. Biochem. Cell Biol. 36, 39–77.PubMedCrossRefGoogle Scholar
  4. 4.
    Duggan, A.E., Marie, R.S., Jr., and Callard, I.P. (2002) Expression of SR-BI (Scavenger Receptor Class B Type I) in Turtle (Chrysemys Picta) Tissues and Other Nonmammalian Vertebrates. J. Exp. Zool. 292, 430–434.PubMedCrossRefGoogle Scholar
  5. 5.
    Kiefer, C., Sumser, E., Wernet, M.F., and von Lintig, J. (2002) A Class B Scavenger Receptor Mediates the Cellular Uptake of Carotenoids in Drosophila. PNAS 99, 10581–10586.PubMedCrossRefGoogle Scholar
  6. 6.
    Acton, S., Rigotti, A., Landschulz, K.T., Xu, S., Hobbs, H.H., and Krieger, M. (1996) Identification of Scavenger Receptor SR-BI as a High Density Lipoprotein Receptor. Science 271, 518–520.PubMedCrossRefGoogle Scholar
  7. 7.
    Glass, C., Pittman, R.C., Weinstein, D.B., and Steinberg, D. (1983) Dissociation of Tissue Uptake of Cholesterol Ester from That of Apoprotein A-I of Rat Plasma High Density Lipoprotein: Selective Delivery of Cholesterol Ester to Liver, Adrenal, and Gonad. Proc. Natl. Acad. Sci. U S A 80, 5435–5439.PubMedCrossRefGoogle Scholar
  8. 8.
    Babitt, J., Trigatti, B., Rigotti, A., Smart, E.J., Anderson, R. G., Xu, S., and Krieger, M. (1997) Murine SR-BI, a High Density Lipoprotein Receptor that Mediates Selective Lipid Uptake, is N-Glycosylated and Fatty Acylated and Colocalizes with Plasma Membrane Caveolae. J. Biol. Chem. 272, 13242–13249.PubMedCrossRefGoogle Scholar
  9. 9.
    Webb, N.R., de Villiers, W.J., Connell, P.M., de Beer, F.C., and van der Westhuyzen, D.R. (1997) Alternative Forms of the Scavenger Receptor BI (SR-BI). J. Lipid Res. 38, 1490–1495.PubMedGoogle Scholar
  10. 10.
    Svensson, P.A., Englund, M.C., Snackestrand, M.S., Hagg, D.A., Ohlsson, B.G., Stemme, V., Mattsson-Hulten, L., Thelle, D.S., Fagerberg, B., Wiklund, O., Carlsson, L.M., and Carlsson, B. (2005) Regulation and Splicing of Scavenger Receptor Class B Type I in Human Macrophages and Atherosclerotic Plaques. BMC Cardiovasc. Disord. 5, 25.PubMedCrossRefGoogle Scholar
  11. 11.
    Webb, N.R., Connell, P.M., Graf, G.A., Smart, E.J., de Villiers, W.J., de Beer, F.C., and van der Westhuyzen, D.R. (1998) SR-BII, an Isoform of the Scavenger Receptor BI Containing an Alternate Cytoplasmic Tail, Mediates Lipid Transfer Between High Density Lipoprotein and Cells. J. Biol. Chem. 273, 15241–15248.PubMedCrossRefGoogle Scholar
  12. 12.
    Shiratsuchi, A., Kawasaki, Y., Ikemoto, M., Arai, H., and Nakanishi, Y. (1999) Role of Class B Scavenger Receptor Type I in Phagocytosis of Apoptotic Rat Spermatogenic Cells by Sertoli Cells. J. Biol. Chem. 274, 5901–5908.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, X.A., Guo, L., Dressman, J.L., Asmis, R., and Smart, E.J. (2005) A Novel Ligand-Independent Apoptotic Pathway Induced by Scavenger Receptor Class B, Type I and Suppressed by Endothelial Nitric-Oxide Synthase and High Density Lipoprotein. J. Biol. Chem. 280, 19087–19096.PubMedCrossRefGoogle Scholar
  14. 14.
    Reboul, E., Klein, A., Bietrix, F., Gleize, B., Malezet-Desmoulins, C., Schneider, M., Margotat, A., Lagrost, L., Collet, X., and Borel, P. (2006) Scavenger Receptor Class B Type I (SR-BI) Is Involved in Vitamin E Transport across the Enterocyte, J. Biol. Chem. 281, 4739–4745.PubMedCrossRefGoogle Scholar
  15. 15.
    Bietrix, F., Yan, D., Nauze, M., Rolland, C., Bertrand-Michel, J., Comera, C., Schaak, S., Barbaras, R., Groen, A.K., Perret, B., Terce, F., and Collet, X. (2006) Accelerated Lipid Absorption in Mice Overexpressing Intestinal SR-BI. J. Biol. Chem. 281, 7214–7219.PubMedCrossRefGoogle Scholar
  16. 16.
    Frøystad, M.K., Rode, M., Berg, T., and Gjøen, T. (1998) A Role for Scavenger Receptors in Phagocytosis of Protein-Coated Particles in Rainbow Trout Head Kidney Macrophages. Dev. Comp. Immunol. 22, 533–549.PubMedCrossRefGoogle Scholar
  17. 17.
    Frøystad, M.K., Volden, V., Berg, T., and Gjøen, T. (2002) Metabolism of Oxidized and Chemically Modified Low Density Lipoproteins in Rainbow Trout—Clearance Via Scavenger Receptors, Dev. Comp. Immunol. 26, 723–733.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaur, H., Jaso-Friedmann, L., and Evans, D.L. (2003) Identification of a Scavenger Receptor Homologue on Nonspecific Cytotoxic Cells and Evidence for Binding to Oligodeoxyguanosine, Fish Shellfish Immunol. 15, 169–181.PubMedCrossRefGoogle Scholar
  19. 19.
    Storebakken, T. (2002) Atlantic Salmon, Salmo Salar, in Nutrient Requirements and Feeding of Finfish for Aquaculture (Webster, C.D. and Lim, C., eds.), CAB International, Wallingford, pp. 79–102.Google Scholar
  20. 20.
    Ruyter, B. and Thomassen, M.S. (1999) Metabolism of n−3 and n−6 Fatty Acids in Atlantic Salmon Liver: Stimulation by Essential Fatty Aacid Deficiency. Lipids 34, 1167–1176.PubMedCrossRefGoogle Scholar
  21. 21.
    Vegusdal, A., Gjøen, T., Berge, R.K., Thomassen, M.S., and Ruyter, B. (2005) Effect of 18∶1n−9, 20∶5n−3, and 22∶6n−3 on Lipid Accumulation and Secretion by Atlantic Salmon Hepatocytes. Lipids 40, 477–486.PubMedCrossRefGoogle Scholar
  22. 22.
    Spady, D.K., Kearney, D.M., and Hobbs, H.H. (1999) Polyunsaturated Fatty Acids Up-Regulate Hepatic Scavenger Receptor B1 (SR-BI) Expression and HDL Cholesteryl Ester Uptake in the Hamster. J. Lipid Res. 40, 1384–1394.PubMedGoogle Scholar
  23. 23.
    Dubrac, S., Parquet, M., Gripois, D., Blouquit, M.F., Serougne, C., Loison, C., and Lutton, C. (2001) Diet-Dependent Effects of Insulin Infusion on the Hepatic Lipoprotein Receptors and the Key Enzymes of Bile Acid Synthesis in the Hamster, Life Sci. 69, 2517–2532.PubMedCrossRefGoogle Scholar
  24. 24.
    Sporstøl, M. (2005) Regulation of Hepatic SR-BI and ABCA1 by Nuclear Receptors, Ph.D. Thesis, University of Oslo, Oslo, Manuscript.Google Scholar
  25. 25.
    Mommsen, T.P., Vijayan, M.M., and Moon, T.W. (1999) Cortisol in Teleosts: Dynamics, Mechanisms of Action, and Metabolic Regulation. Rev. Fish Biol. Fisher 9, 211–268.CrossRefGoogle Scholar
  26. 26.
    Pierce, A.L., Fukada, H., and Dickhoff, W.W. (2005) Metabolic Hormones Modulate the Effect of Growth Hormone (GH) on Insulin-like Growth Factor-I (IGF-I) mRNA Level in Primary Culture of Salmon Hepatocytes. J. Endocrinol. 184, 341–349.PubMedCrossRefGoogle Scholar
  27. 27.
    Mommsen, T.P. and Plisetskaya, E.M. (1991) Insulin in Fishes and Agnathans: History, Structure, and Metabolic Regulation, Rev. Aquat. Sci. 4, 225–259.Google Scholar
  28. 28.
    Petersen, T.D.P., Hochachka, P.W., and Suarez, R.K. (1987) Hormonal Control of Gluconeogenesis in Rainbow Trout Hepatocytes: Regulatory Role of Pyruvate Kinase. J. Exp. Zool. 243, 173–180.CrossRefGoogle Scholar
  29. 29.
    Seglen, P.O. (1976) Preparation of Isolated Rat Liver Cells, Methods Cell Biol. 13, 29–83.PubMedGoogle Scholar
  30. 30.
    Dannevig, B.H. and Berg, T. (1985) Endocytosis of Galactose-Terminated Glycoproteins by Isolated Liver Cells of the Rainbow Trout (Salmo Gairdneri), Comp. Biochem. Physiol. B 82, 683–688.PubMedCrossRefGoogle Scholar
  31. 31.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  32. 32.
    Rozen, S. and Skaletsky, H. (2000) Primer3 on the WWW for General Users and for Biologist Programmers, in Bioinformatics Methods and Protocols: Methods in Molecular Biology (Krawetz, S. and Misener, S., eds.), Humana Press, Totowa, NJ, vol. 132, pp. 365–386.Google Scholar
  33. 33.
    Wergeland, H.I. and Jakobsen, R.A. (2001) A Salmonid Cell Line (TO) for Production of Infectious Salmon Anaemia Virus (ISAV), Dis Aquat. Organ 44, 183–190.PubMedGoogle Scholar
  34. 34.
    Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L. (2001) Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 305, 567–580.PubMedCrossRefGoogle Scholar
  35. 35.
    Center for Biological Sequence Analysis, Technical University of Denmark DTU, (accessed May 2006).Google Scholar
  36. 36.
    Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998) SMART, a Simple Modular Architecture Research Tool: Identification of Signaling Domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864.PubMedCrossRefGoogle Scholar
  37. 37.
    Tatusova, T.A. and Madden, T.L. (1999) BLAST 2 Sequences, a New Tool for Comparing Protein and Nucleotide Sequences, FEMS Microbiol. Lett. 174, 247–250.PubMedCrossRefGoogle Scholar
  38. 38.
    Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  39. 39.
    Rasmussen, R. (2001) Quantification on the LightCycler, in Rapid Cycle Real-time PCR: Methods and Applications (Meuer, S., Wittwer, C., Meuer, K., and Stefan, S. C., eds.), Springer, New York, pp. 21–34.Google Scholar
  40. 40.
    Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25, 402–408.PubMedCrossRefGoogle Scholar
  41. 41.
    Jørgensen, S.M., Kleveland, E.J., Grimholt, U., and Gjøen, T. (2006) Validation of Reference Genes for Real-time PCR Studies in Atlantic Salmon. Mar. Biotechnol. 8, 398–408.PubMedCrossRefGoogle Scholar
  42. 42.
    Pfaffl, M.W., Horgan, G.W., and Dempfle, L. (2002) Relative Expression Software Tool (REST) for Group-wise Comparison and Statistical Analysis of Relative Expression Results in Real-time PCR. Nucleic Acids Res. 30, e36.PubMedCrossRefGoogle Scholar
  43. 43.
    Chapman, M.J. (1980) Animal Lipoproteins: Chemistry, Structure, and Comparative Aspects. J. Lipid Res. 21, 789–853.PubMedGoogle Scholar
  44. 44.
    Farrell, A.P. (2002) Coronary Arteriosclerosis in Salmon: Growing Old or Growing Fast?, Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 723–735.PubMedCrossRefGoogle Scholar
  45. 45.
    Parathath, S., Sahoo, D., Darlington, Y.F., Peng, Y., Collins, H.L., Rothblat, G.H., Williams, D.L. and Connelly, M.A. (2004) Glycine 420 Near the C-Terminal Transmembrane Domain of SR-BI is Critical for Proper Delivery and Metabolism of High Density Lipoprotein Cholesteryl Ester, J. Biol. Chem. 279, 24976–24985.PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson, M.S., Svensson, P.A., Helou, K., Billig, H., Levan, G., Carlsson, L.M., and Carlsson, B. (1998) Characterization and Chromosomal Localization of Rat Scavenger Receptor Class B Type I, a High Density Lipoprotein Receptor with a Putative Leucine Zipper Domain and Peroxisomal Targeting Sequence. Endocrinology 139, 72–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Williams, D.L., de La Llera-Moya, M., Thuahnai, S.T., Lund-Katz, S., Connelly, M.A., Azhar, S., Anantharamaiah, G.M., and Phillips, M.C. (2000) Binding and Cross-linking Studies Show that Scavenger Receptor BI Interacts with Multiple Sites in Apolipoprotein A-I and Identify the Class A Amphipathic Alpha-helix as a Recognition Motif, J. Biol. Chem. 275, 18897–18904.PubMedCrossRefGoogle Scholar
  48. 48.
    Thuahnai, S.T., Lund-Katz, S., Anantharamaiah, G.M., Williams, D.L., and Phillips, M.C. (2003) A Quantitative Analysis of Apolipoprotein Binding to SR-BI: Multiple Binding Sites for Lipid-Free and Lipid-Associated Apolipoproteins, J. Lipid Res. 44, 1132–1142.PubMedCrossRefGoogle Scholar
  49. 49.
    Sporstøl, M., Tapia, G., Malerød, L., Mousavi, S.A., and Berg, T. (2005) Pregnane X Receptor-agonists Down-regulate Hepatic aTP-Binding Cassette Transporter A1 and Scavenger Receptor Class B Type I, Biochem. Biophys. Res. Commun. 331, 1533–1541.PubMedCrossRefGoogle Scholar
  50. 50.
    Malerød, L., Sporstøl, M., Juvet, L.K., Mousavi, S.A., Gjøen, T., Berg, T., Roos, N., and Eskild, W. (2005) Bile Acids Reduce SR-BI Expression in Hepatocytes by a Pathway Involving FXR/RXR, SHP, and LRH-1, Biochem. Biophys. Res. Commun. 336, 1096–1105.PubMedCrossRefGoogle Scholar
  51. 51.
    Krogdahl, A., Nordrum, S., Sørensen, M., Brudeseth, L., and Røsjø, C. (1999) Effects of Diet Composition on Apparent Nutrient Absorption Along the Intestinal Tract and of Subsequent Fasting on Mucosal Disaccharidase Activities and Plasma Nutrient Concentration in Atlantic Salmon (Salmo Salar L.), Aquacult. Nutr., 5, 121–133.CrossRefGoogle Scholar
  52. 52.
    Denstadli, V., Vegusdal, A., Krogdahl, A., Bakke-McKellep, A.M., Berge, G.M., Holm, H., Hillestad, M., and Ruyter, B. (2004) Lipid Absorption in Different Segments of the Gastrointestinal Tract of Atlantic Salmon (Salmo Salar L.), Aquaculture 240, 385–398.CrossRefGoogle Scholar
  53. 53.
    Landschulz, K.T., Pathak, R. K., Rigotti, A., Krieger, M., and Hobbs, H.H. (1996) Regulation of Scavenger Receptor, Class B, Type I, a High Density Lipoprotein Receptor, in Liver and Steroidogenic Tissues of the Rat, J. Clin. Invest. 98, 984–995.PubMedCrossRefGoogle Scholar
  54. 54.
    Mommsen, T.P. and Lazier, C.B (1986) Stimulation of Estrogen Receptor Accumulation by Estradiol in Primary Cultures of Salmon Hepatocytes, FEBS Letters 195, 269–271.PubMedCrossRefGoogle Scholar
  55. 55.
    Collet, B. and Secombes, C.J. (2001) The Rainbow Trout (Oncorhynchus Mykiss) Mx1 Promoter: Structural and Functional Characterization, Eur. J. Biochem., 268, 1577–1584.PubMedCrossRefGoogle Scholar
  56. 56.
    Chong, K.L., Wang, S., and Melamed, P. (2004) Isolation and Characterization of the Follicle-Stimulating Hormone Beta Subunit Gene and 5′ Flanking Region of the Chinook Salmon, Neuroendocrinology 80, 158–170.PubMedCrossRefGoogle Scholar
  57. 57.
    Jøgensen, S.M., Syvertsen, B.L., Lukacs, M., Grimholt, U., and Gjøen, T. (2006) Expression of MHC Class I Pathway Genes in Response to Infectious Salmon Anaemia Virus in Atlantic Salmon (Salmo Salar L.) Cells, Fish Shellfish Immunol. 21, 548–560.CrossRefGoogle Scholar
  58. 58.
    Pierce, A.L., Dickey, J.T., Larsen, D.A., Fukada, H., Swanson, P., and Dickhoff, W.W. (2004) A Quantitative Real-time RT-PCR Assay for Salmon IGF-I mRNA, and Its Application in the Study of GH Regulation of IGF-I Gene Expression in Primary Culture of Salmon Hepatocytes. Gen. Comp. Endocrinol. 135, 401–411.PubMedCrossRefGoogle Scholar
  59. 59.
    Navarro, I., Leibush, B., Moon, T.W. Plisetskaya, E.M., Banos, N., Mendez, E., Planas, J.V., and Gutierrez, J. (1999) Insulin, Insulin-like Growth Factor-I (IGF-I) and Glucagon: The Evolution of Their Receptors, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 122, 137–153.PubMedCrossRefGoogle Scholar
  60. 60.
    Thorngate, F.E., Raghow, R., Wilcox, H.G., Werner, C.S., Heimberg, M., and Elam, M.B. (1994) Insulin Promotes the Biosynthesis and Secretion of Apolipoprotein B-48 by Altering Apoplipoprotein B mRNA Editing, Proc. Natl. Acad. Sci. USA 91, 5392–5396.PubMedCrossRefGoogle Scholar
  61. 61.
    Chrieac, D.V., Cianci, J., Collins, H.L., Sparks, J.D., and Sparks, C.E. (2002) Insulin Suppression of VLDL Apo B Secretion is Not Mediated by the LDL Receptor, Biochem. Biophys. Res. Commun., 297, 134–137.CrossRefGoogle Scholar
  62. 62.
    Allister, E.M., Borradaile, N.M., Edwards, J.Y., and Huff, M.W. (2005) Inhibition of Microsomal Triglyceride Transfer Protein Expression and Apolipoprotein B100 Secretion by the Citrus Flavonoid Naringenin and by Insulin Involves Activation of the Mitogen-Activated Protein Kinase Pathway in Hepatocytes, Diabetes 54, 1676–1683.PubMedGoogle Scholar
  63. 63.
    Li, X., Peegel, H., and Menon, K.M. (2001) Regulation of High Density Lipoprotein Receptor Messenger Ribonucleic Acid Expression and Cholesterol Transport in Theca-Interstitial Cells by Insulin and Human Chorionic Gonadotropin, Endocrinology 142, 174–181.PubMedCrossRefGoogle Scholar
  64. 64.
    Edvardsson, U., Ljungberg, A., and Oscarsson, J. (2006) Insulin and Oleic Acid Increase PPARgamma2 Expression in Cultured Mouse Hepatocytes, Biochem. Biophys. Res. Commun., 340, 111–117.PubMedCrossRefGoogle Scholar
  65. 65.
    Malerød, L., Sprostøl, M., Juvet, L.K., Mousavi, A., Gjøen, T., and Berg, T. (2003) Hepatic Scavenger Receptor Class B, Type I is Stimulated by Peroxisome Proliferator-Activated Receptor Gamma and Hepatocyte Nuclear Factor 4alpha, Biochem. Biophys. Res. Commun. 305, 557–565.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2006

Authors and Affiliations

  • E. J. Kleveland
    • 2
  • B. L. Syvertsen
    • 2
  • B. Ruyter
    • 1
  • A. Vegusdal
    • 1
  • S. M. Jørgensen
    • 2
  • T. Gjøen
    • 2
  1. 1.AKVAFORSKInstitute of Aquaculture ResearchÅsNorway
  2. 2.Department of Pharmaceutical Biosciences, School of PharmacyUniversity of OsloOsloNorway

Personalised recommendations