Lipids

, 41:669 | Cite as

Effects of cis-9, trans-11, CLA in rats at intake levels reported for breast-fed infants

  • A. M. Turpeinen
  • E. von Willebrand
  • I. Salminen
  • J. Linden
  • S. Basu
  • D. Rai
Articles

Abstract

CLA intake in exclusively breast-fed infants is close to levels found to have physiological effects in animals. However, in the majority of studies mixtures of CLA isomers have been used and the independent effects of the major CLA isomer in human milk, cis-9, trans-11 CLA, at the intake level in exclusively breast-fed infants have hardly been studied. We therefore studied the effects of cis-9, trans-11 CLA on plasma lipids and glucose, immune function, and bone metabolism in growing rats. Thirty male Sprague-Dawley rats (n=10/group) were fed either 20 mg/kg/d cis-9, trans-11 CLA and 20 mg/kg/d sunflower oil (CLA20), 40 mg/kg/d cis-9, trans-11 CLA (CLA40), or 40 mg/kg/d sunflower oil (placebo) for 8 wk. No significant differences between groups were found in plasma lipids, glucose, insulin, C-reactive protein, or lipid peroxidation. Liver fat content was lowest in the CLA20 group. In vitro interleukin 2 (IL-2) production increased, and tumor necrosis factor alpha, IL-1β, prostaglandin E2, and leukotriene B4 production decreased in the CLA20 group. No differences between groups were detected in IL-4, IL-6, or interferon gamma production, plasma osteocalcin, insulin-like growth factor, or urinary deoxypyridino line crosslinks. Plasma tartrate-resistant acid phosphatase 5b activity was significantly increased in the CLA40 group. The results indicate anti-inflammatory effects and enhanced T-cell function for the CLA20 group. No adverse effects were seen in the CLA20 group, whereas indications of increased bone resorption rate were observed in the CLA40 group.

Abbreviations

Con A

concavalin A

CRP

C-reactive protein

DPD

deoxypyridinoline

IFN-γ

interferon gamma

IGF-1

insulin-like growth factor

IL

interleukin

LPS

lipopolysaccharide

LT

leukotriene

PG

prostaglandin

TNF-α

tumor necrosis alpha

TRACP

tartrate-resistant acid phosphatase

References

  1. 1.
    Kritchevsky, D. (2000) Antimutagenic and Some Other Effects of Conjugated Linoleic Acid, Br. J. Nutr. 83, 459–465.PubMedGoogle Scholar
  2. 2.
    Belury, M.A. (2002) Dietary Conjugated Linoleic Acid in Health: Physiological Effects and Mechanisms of Action, Annu. Rev. Nutr. 22, 505–531.PubMedCrossRefGoogle Scholar
  3. 3.
    O'Shea, M., Bassaganya-Riera, J., and Mohede, I.C.M. (2004) Immunomodulatory Properties of Conjugated Linoleic Acid, Am. J. Clin. Nutr. 79, 1199S-1206S.PubMedGoogle Scholar
  4. 4.
    Watkins, B.A., Shen, C.-L., McMurtry, J.P., Xu, H., Bain, S.D., Allen, K.G.D., and Seifert, M.F. (1997) Dietary Lipids Modulate Bone Prostaglandin E2 Production, Insulin-like Growth Factor-I Concentration and Formation Rate in Chicks, J. Nutr. 127, 1084–1091.PubMedGoogle Scholar
  5. 5.
    Li, Y., Seifert, M.F., Ney, D.M., Grahn, M., Grant, A.L., Allen, K.G.D., and Watkins, B.A. (1999) Dietary Conjugated Linoleic Acids Alter Plasma IGF-1 and IGF Binding Protein Concentrations and Reduce Bone Formation in Rats Fed (n−6) or (n−3) Fatty Acids. J. Bone Miner. Res. 14, 1153–1162.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsuboyama-Kasaoka, N., Takahashi, N., Tanemura, K., Kim, H.-J., Tange, T., Okuyama, H., Kasai, M., Ikemoto, S., and Ezaki, O. (2000) Conjugated Linoleic Acid Supplementation Reduces Adipose Tissue by Apoptosis and Develops Lipodystrophy in Mice. Diabetes 49, 1534–1542.PubMedGoogle Scholar
  7. 7.
    Warren, J.M., Simon, V.A., Bartolini, G., Erickson, K.L., Mackey, B.E., and Kelley, D.S. (2003) trans-10,cis-12 CLA Increases Liver and Decreases Adipose Tissue Lipids in Mice: Possible Roles of Specific Lipid Metabolism Genes, Lipids 38, 497–504.PubMedCrossRefGoogle Scholar
  8. 8.
    Belury, M.A., and Kempa-Steczko, A. (1997) Conjugated Linoleic Acid Modulates Hepatic Lipid Composition in Mice, Lipids 32, 199–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Riserus, U., Arner, P., Brismar, K., and Vessby, B. (2002) Treatment with Dietary trans-10,cis-12 CLA Conjugated Linoleic Acid Causes Isomer-Specific Insulin Resistance in Obese Men with Metabolic Syndrome, Diabetes Care 25, 1516–1521.PubMedGoogle Scholar
  10. 10.
    Riserus, U., Basu, S., Jovinge, S., Fredrickson, N., Ärnlöv, J., and Vessby, B. (2002) Supplementation with Conjugated Linoleic Acid Causes Isomer-Dependent Oxidative Stress and Elevated C-Reactive Protein, Circulation 106, 1925–1929.PubMedCrossRefGoogle Scholar
  11. 11.
    Basu, S., Riserus, U., Turpeinen, A. and Vessby, B. (2000) Conjugated Linoleic Acid Induces Lipid Peroxidation in Men with Abdominal Obesity. Clin. Sci. 99, 511–516.PubMedCrossRefGoogle Scholar
  12. 12.
    Riserus, U., Vessby B, Ärnlöv, J., and Basu, S. (2004) Effects of cis-9,trans-11 Conjugated Linoleic Acid Supplementation on Insulin Sensitiiity, Lipid Peroxidation, and Proinflammatory Markers in Obese Men, Am. J. Clin. Nutr. 80, 279–283.PubMedGoogle Scholar
  13. 13.
    Harrison, L.N. (2002) Conjugated Linoleic Acid Intake of Exclusively Breastfed Infants. Honors Thesis UH540, Washington State University.Google Scholar
  14. 14.
    Ip, C., Singh, M., Thompson, H.J., and Scimeca, J.A. (1994) Conjugated Linoleic Acid Suppresses Mammary Carcinogenesis and Proliferative Activity of the Mammary Gland in the Rat, Cancer Res. 54, 1212–1215.PubMedGoogle Scholar
  15. 15.
    McGuire, M.K., Park, Y., Behre, R.A., Harrison, L.Y., Shultz, T.D., and McGuire, M.A. (1997) Conjugated Linoleic Acid Concentrations of Human Milk and Infant Formula, Nutr. Res. 17, 1277–1283.CrossRefGoogle Scholar
  16. 16.
    Ip, C., Scimeca, J.A., and Thompson, H. (1995) Effect of Timing and Duration of Dietary Conjugated Linoleic acid on Mammary Cancer Prevention. Nutr. Cancer 24, 241–247.PubMedCrossRefGoogle Scholar
  17. 17.
    Pryor, M., Slattery, M.L., Robinson, L.M., and Egger, M. (1989) Adolescent Diet and Breast Cancer in Utah, Cancer Res. 49, 2161–2167.PubMedGoogle Scholar
  18. 18.
    Frazier, A.L., Ryan, C.T., Rockett, H., Willett, W.C., and Colditz, G.A. (2003) Adolescent Diet and Risk of Breast Cancer, Breast Cancer Res. 5, R59-R64.CrossRefGoogle Scholar
  19. 19.
    Folch, J., Lees, M., and Sloan-Stanley, G.H.S. (1957) A Simple Method for Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  20. 20.
    Hara, A., and Radin, N.S. (1978) Lipid Extraction of Tissues with a Low-Toxicity Solvent, Anal. Biochem. 90, 420–426.PubMedCrossRefGoogle Scholar
  21. 21.
    Stoffel, W., Chu, F., and Ahrens, E.H. Jr. (1959) Analysis of Long-Chain Fatty Acids by Gas-liquid Chromatography, Anal. Chem. 31, 307–308.CrossRefGoogle Scholar
  22. 22.
    Basu, S. (1998) Radioimmunoassay of 8-Iso-Prostaglandin F2: An Index for Oxidative Injury via Free Radical Catalysed Lipid Peroxidation, Prostaglandins Leukot. Essent. Fatty Acids 58, 319–325.PubMedCrossRefGoogle Scholar
  23. 23.
    O'Hagan, S., and Menzel, A. (2003) A Subchronic 90-Day Oral Rat Toxicity Study and in vitro Genotoxicity Studies with a Conjugated Linoleic Acid Product, Food Chem. Toxicol. 41, 1749–1760.PubMedCrossRefGoogle Scholar
  24. 24.
    Miroli, A.A., James, B.M., and Spitz, M. (1986) Single-Step Enrichment of Human Peripheral Blood Basophils by Ficoll-Paque Centrifugation. J. Immunol. Methods 88, 91–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Thijssen, M.A.M.A., Malpuech-Brugere, C., Gregoire, S., Chardigny, J.M., Sebedio, J.L., and Mensink, R.P. (2003) Effects of Specific CLA Isomers on Plasma Fatty Acid Profile and Expression of Desaturases in Humans Lipids 40, 137–145CrossRefGoogle Scholar
  26. 26.
    Burdge, G.C., Lupoli, B., Russell, J.J., Tricon, S., Kew, S., Banerjee, T., Shingfield, K.J., Beever, D.E., Grimble, R.F., Williams, C.M., Yaqoob, P., and Calder, P.C. (2004) Incorporation of cis-9,trans-11 or trans-10,cis-12 Conjugated Linoleic Acid into Plasma and Cellular Lipids in Healthy Men, J. Lipid Res. 45, 736–741.PubMedCrossRefGoogle Scholar
  27. 27.
    Stangl, G.I. (2000) High Dietary Levels of a Conjugated Linoleic Acid Mixture Alter Hepatic Glycerophospholipid Class Profile and Cholesterol-Carrying Serum Lipoproteins of Rats, J. Nutr. Biochem. 11, 184–191.PubMedCrossRefGoogle Scholar
  28. 28.
    Sisk, M.B., Hausman Martin, R.J., and Azain, M.J. (2001) Dietary Conjugated Linoleic Acid Reduces Adiposity in Lean but Not Obese Zucker Rats, J. Nutr. 131, 1668–1674.PubMedGoogle Scholar
  29. 29.
    Sugano, M., Akahoshi, A., Koba, K., Tanaka, K., Okumura, T., Matsuyama, H., Goto, Y., Miyazaki, T., Murao, K., Yamasaki, M., Nonaka, M., and Yamada, K. (2001) Dietary Manipulations of Body Fat-Reducing Potential of Conjugated Linoleic Acid in Rats, Biosci Biotech. Biochem. 65, 2335–2541.CrossRefGoogle Scholar
  30. 30.
    Rahman, S.M., Wang Y.-M., Han, S.-Y., Cha., J.-Y., Fukuda, N., Yotsumoto, H., and Yanagita, T. (2001). Effects of Short-Term Administration of Conjugated Linoleic Acid on Lipid Metabolism in White and Brown Adipose Tissues of Starved/Refed Otsuka Long-Evans Tokushima Fatty rats, Food Res. International 34, 515–520.CrossRefGoogle Scholar
  31. 31.
    Tricon, S., Burdge, G.C., Williams, C.M., Calder, P.C., and Yaqoob, P. (2005) The Effects of Conjugated Linoleic Acid on Human Health-Related Outcomes, Proc. Nutr. Soc. 64, 171–182.PubMedCrossRefGoogle Scholar
  32. 32.
    Tricon, S., Burdge, G.C., Kew, S., Banerjee, T., Russell, J.J., Jones, E.L., Grimble, R.F., Williams, C.M., Yaqoob, P., and Calder, P.C. (2004) Opposing Effects of cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid on Blood Lipids in Healthy Humans. Am. J. Clin. Nutr. 80, 614–620.PubMedGoogle Scholar
  33. 33.
    Delany, J.P., Blohm, F., Truett, A.A., Scimeca, J.A., and West, D.B. (1999) Conjugated Linoleic Acid Rapidly Reduces Body Fat Content in Mice Without Affecting Energy Intake, Am. J. Physiol. 276, R1172-R1179.PubMedGoogle Scholar
  34. 34.
    West, D.B., Blohm, F.Y., Truett, A.A., and DeLany, J.P. (2000) Conjugated Linoleic Acid Persistently Increases Total Energy Expenditure in AKR/J Mice Without Increasing Uncoupling Protein Gene Expression. J. Nutr. 130, 2471–2477.PubMedGoogle Scholar
  35. 35.
    Ryder, J.W., Portocarrero, C.P., Song, X.M., Cui, L., Yu, M., Combatsiaris, T., Galuska, D., Bauman, D.E., Barbano, D.M., Charron, M.J., Zierath, J.R., and Houseknecht, K.L. (2001) Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid, Diabetes 50, 1149–1157.PubMedGoogle Scholar
  36. 36.
    Houseknecht, K.L., Vanden Heuvel, J.P., Moya-Camarena, S.Y., Portocarrero, C.P., Peck, L.W., Nickel, K.P., and Belury, M.A. (1998) Dietary Conjugated Linoleic Acid Normalizes Impaired Glucose Tolerance in the Zucker Diabetic fa/fa Rat, Biochem. Biophys. Res. Commun. 244, 678–682.PubMedCrossRefGoogle Scholar
  37. 37.
    Moloney, F., Yeow, T.-P., Mullen, A., Nolan, J.J., and Roche, H.M. (2004) Conjugated Linoleic Acid Supplementation, Insulin Sensitivity, and Lipoprotein Metabolism in Patients with Type 2 Diabetes Mellitus, Am. J. Clin. Nutr. 80, 887–895.PubMedGoogle Scholar
  38. 38.
    Tricon, S., Burdge, G.C., Kew, S., Banerjee, T., Russell, J.J., Jones, E.L., Grimble, R.F., Williams, C.M., Yaqoob, P., and Calder, P.C. (2004) Opposing Effects of cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid on Blood Lipids in Healthy Humans, Am. J. Clin. Nutr. 80, 614–620.PubMedGoogle Scholar
  39. 39.
    Smedman, A., Basu, S., Jovinge, S., Nordin Fredrikson, G., and Vessby, B. (2005) Conjugated Linoleic Acid Increased C-Reactive Protein in Human Subjects, Br J. Nutr. 94, 791–795.PubMedCrossRefGoogle Scholar
  40. 40.
    Kelley, D.S., Warren, J.M., Simon, V.A., Bartolini, G., Mackey, B.E., and Erickson, K.L. (2002) Similar Effects of c9,t11-CLA and t19,c12-CLA on Immune Cell Functions in Mice, Lipids 37, 725–728.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamasaki, M., Chujo, H., Hirao, A., Koyanagi, N., Okamoto, T., Tojo, N., Oishi, A., Iwata, T., Yamauchi-Sato, Y., Yamamoto, T., Tsutsumi, K., Tachibana, H., and Yamada, K. (2003) Immunoglobulin and Cytokine Production from Spleen Lymphocytes Is Modulated in C57BL/6J Mice by Dietary cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid, J. Nutr. 133, 784–788.PubMedGoogle Scholar
  42. 42.
    Tricon, S., Burdge, G.C., Kew, S., Banerjee, T., Russell, J.J., Grimble, R.F., Williams, C.M., Calder, P.C., and Yaqoob, P. (2004) Effects of cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid on Immune Cell Function in Healthy Humans, Am. J. Clin. Nutr. 80, 1626–1633.PubMedGoogle Scholar
  43. 43.
    Turek, J.J., Li, Y., Schoenlein, I.A., Allen, K.G.D., and Watkins, B.A. (1998) Modulation of Macrophage Cytokine Production by Conjugated Linoleic Acid Is Influenced by the Dietary n-6:n-3 Fatty Acid Ratio, J. Nutr. Biochem. 9, 258–266.CrossRefGoogle Scholar
  44. 44.
    Changhua, L., Jindong, Y., Defa, L., Lidan, Z., Shiyan, Q., and Jianjun, X. (2005) Conjugated Linoleic Acid Attenuates the Production and Gene Expression of Proinflammatory Cytokines in Weaned Pigs Challenged with Lipopolysaccharide. J. Nutr. 135, 239–244.PubMedGoogle Scholar
  45. 45.
    Song, H.-J., Grant, I., Rotondo, D., Mohede, I., Sattar, N., Heys, S.D., and Wahle, K.W.J. (2005) Effect of CLA Supplementation on Immune Function in Young Healthy Volunteers, Eur. J. Clin. Nutr. 59, 508–517.PubMedCrossRefGoogle Scholar
  46. 46.
    Kelley, D.S., Simon, V.A., Taylor, P.C., Rudolph, I.L., Benito P., Nelson, G.J., Mackey, B.E., and Erickson, K.L. (2000) Dietary Conjugated Linoleic Acid Increased Its Concentration in Human Peripheral Blood Mononuclear Cells, but Did Not Alter Their Function, Lipids 36, 669–674.CrossRefGoogle Scholar
  47. 47.
    Albers, R., van der Wielen, R.P.J., Brink, E.J., Hendriks H.F.J., Dorovska-Taran, V.N., Mohede, I.C.M. (2003) Effects of cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid(CLA) Isomers on Immune Function in Healthy Men, Eur. J. Clin. Nutr. 57, 595–603.PubMedCrossRefGoogle Scholar
  48. 48.
    Sugano, M., Tsujita, A., Yamasaki, M., Noguchi, M., and Yamada, K. (1998) Conjugated Linoleic Acid Modulates Tissue Levels of Chemical Mediators and Immunoglobulins in Rats, Lipids 33, 521–527.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong, M.W., Chew, B.P., Wong, T.S., Hosick, H.L., Boylston, T.D., and Schultz, T.D. (1997) Effects of Dietary Conjugated Linoleic Acid on Lymphocyte Function and Growth of Mammary Tumors in Mice, Anticancer Res. 17, 987–994.PubMedGoogle Scholar
  50. 50.
    Sugano, M., Yamasaki, M., Yamada, K., and Huang, Y.S. (1999) Effect of Conjugated Linoleic Acid on Polyunsaturated Fatty Acid Metabolism and Immune Function, in Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., Nelson, G.J., ed., Advances in Conjugated Linoleic Acid Research, vol. 1, pp. 327–339, AOCS Press, Champaign, IL.Google Scholar
  51. 51.
    Bassaganya-Riera, J., Pogranichniy, R.M., Jobgen, S.C., Halbur, P.G., Yoon, K.J., O'Shea, M., and Mohede, I. (2003) Conjugated Linoleic Acid Ameliorates Viral Infectivity in a Pig Model of Virally Induced Immunosuppression, J. Nutr. 133, 3204–3214.PubMedGoogle Scholar
  52. 52.
    Yang, M.D., and Cook, M.E. (2003) Dietary Conjugated Linoleic Acid Decreased Cachexia, Macrophage Tumor Necrosis Factor-alpha Production, and Modifies Splenocyte Cytokines Production, Exp. Biol. Med. 228, 51–58.Google Scholar
  53. 53.
    Whigham, L.D., Higbee, A., Bjorling, D.E., Park, Y.H., Pariza, M.W., and Cook, M.E. (2002) Decreased Antigen-Induced Eicosanoid Release, in Conjugated Linoleic Acid-Fed Guinea Pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1104-R1112.PubMedGoogle Scholar
  54. 54.
    Whigham, L.D., Cook, E.B., Stahl, J.L., Saban, R., Bjorling, E., Pariza, M.W., and Cook, M.E. (2001) CLA Reduces Antigen-Induced Histamine and PGE2 Release from Sensitized Guinea Pig Tracheae. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R908-R912.PubMedGoogle Scholar
  55. 55.
    Hayek, M.J., San, S.N., Wu D., Watkins, B.A., Meydani, M, Dorsey, J.L., Smith, D.E., and Meydani, S.K. (1999) Dietary Conjugated Linoleic Acid Influences the Immune Response of Young and Old C57BL/6NCrIBR Mice, J. Nutr. 129, 32–38.PubMedGoogle Scholar
  56. 56.
    Kelly, O., Cusack, S., Jewell, C., and Cashman, K.D. (2003) The Effect of Polyunsaturated Fatty Acids, Including Conjugated Linoleic Acid, on Calcium Absorption and Bone Metabolism and Composition in Young Growing Rats, Br J. Nutr. 90, 743–750.PubMedCrossRefGoogle Scholar
  57. 57.
    Doyle, L., Jewell, C., Mullen, A., Nugent, A.P., Roche, H.M., and Cashman, K.D. (2005) Effect of Dietary Supplementation with Conjugated Linoleic Acid on Markers of Calcium and Bone Metabolism in Healthy Adult Men, Eur. J. Clin. Nutr. 59, 432–440.PubMedCrossRefGoogle Scholar
  58. 58.
    Norrdin, R.W., Jee, W.S., and High, W.B (1990) The Role of Prostaglandins in Bone in vivo, Prostaglandins Leukot. Essent. Fatty Acids 41, 139–149.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2006

Authors and Affiliations

  • A. M. Turpeinen
    • 1
  • E. von Willebrand
    • 2
  • I. Salminen
    • 3
  • J. Linden
    • 4
  • S. Basu
    • 5
  • D. Rai
    • 6
  1. 1.University of Helsinki, Department of Applied Chemistry and Microbiology (Nutrition)University of HelsinkiFinland
  2. 2.Transplantation LaboratoryHelsinki University HospitalHelsinkiFinland
  3. 3.Department of Health and Functional CapacityNational Public Health InstituteHelsinkiFinland
  4. 4.Department of Food and Environmental HygieneUniversity of HelsinkiHelsinkiFinland
  5. 5.Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
  6. 6.Mead Johnson NutritionalsEvansville

Personalised recommendations