, Volume 40, Issue 8, pp 755–771 | Cite as

Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet?

  • Gerhard Spiteller


Furan FA (F-acids) are tri-or tetrasubstituted furan derivatives characterized by either a propyl or pentyl side chain in one of the α-positions; the other is substituted by a straight long-chain saturated acid with a carboxylic group at its end. F-acids are generated in large amounts in algae, but they are also produced by plants and microorganisms. Fish and other marine organisms as well as mammals consume F-acids in their food and incorporate them into phospholipids and cholesterol esters. F-acids are catabolized to dibasic urofuran acids, which are excreted in the urine. The biogenetic precursor of the most abundant F-acid, F6, is linoleic acid. Methyl groups in the β-position are derived from adenosylmethionine. Owing to the different alkyl substituents, synthesis of F-acids requires multistep reactions. F-acids react readily with peroxyl radicals to generate dioxoenes. The radical-scavenging ability of F-acids may contribute to the protective properties of fish and fish oil diets against mortality from heart disease.


Linoleic Acid Furan Peroxyl Radical Furan Ring Furan Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



arachidonic acid


cholesterol ester


furan FA


linoleic acid


lipid hydroperoxide




lipid peroxidation


oleic acid






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross, R. (1993) The Pathogenesis of Atherosclerosis. A Perspective for the 1990s, Nature 362, 801–809.PubMedCrossRefGoogle Scholar
  2. 2.
    Lusis, A.J. (2000) Atherosclerosis, Nature, 407, 233–241.PubMedCrossRefGoogle Scholar
  3. 3.
    National Cholesterol Education Program (1993) Second Report of the Expert Panel on Detection, Evolution, and Treatment of High Blood Cholesterol in Adults, National Institutes of Health, NIH Publication No. 93-3095.Google Scholar
  4. 4.
    Gerrity, R.G., Naito, H.K., Richardson, M., and Schwartz, C.J. (1979) Dietary Induced Atherogenesis in Swine, Am. J. Pathol. 95, 775–792.PubMedGoogle Scholar
  5. 5.
    Mott, G.E., Jackson, E.M., McMahan, C.A., and McGill, H.C., Jr. (1992) Dietary Cholesterol and Type of Fat Differentially Affect Cholesterol Metabolism and Atherosclerosis in Baboons, J. Nutr. 122, 1397–1406.PubMedGoogle Scholar
  6. 6.
    Keys, A. (1979) Coronary Heart Disease in Seven Countries, Monograph 29, American Heart Association, New York.Google Scholar
  7. 7.
    Grundy, S.M. (1997) What Is the Desirable Ratio of Saturated, Polyunsaturated, and Monounsaturated Fatty Acids in the Diet? Am. J. Nutr. 66 (Suppl.), 988S-990S.Google Scholar
  8. 8.
    Grundy, S.M., and Denke, M.A. (1990) Dietary Influences on Serum Lipids and Lipoproteins, J. Lipid. Res. 31, 1149–1172.PubMedGoogle Scholar
  9. 9.
    Bang, H.O., and Dyerberg, J. (1980) Lipid Metabolism and Ischemic Heart Disease in Greenland Eskimos, Adv. Nutr. Res. 3, 1–22.Google Scholar
  10. 10.
    Dyerberg, J., Bang, H.O., and Hjørne, N. (1975) Fatty Acid Composition of the Plasma Lipids in Greenland Eskimos, Am. J. Clin. Nutr. 28, 958–966.PubMedGoogle Scholar
  11. 11.
    Dewailly, É., Blanchet, C., Lemieux, S., Sauvé, L., Gingras, S., Ayotte, P., and Holub, B.J. (2001) n−3 Fatty Acids and Cardiovascular Disease Risk Factors Among the Inuit of Nunavik, Am. J. Clin. Nutr. 74, 464–473.PubMedGoogle Scholar
  12. 12.
    Saito, H., Watanabe, T., and Murase, T. (1995) The Fatty Acid Composition of a Highly Migratory Fish, with Seasonal Variation of Docosahexaenoic Acid Content in Lipid of Bonito (Euthynnus pelamis), Biosci. Biotechnol. Biochem. 59, 2186–2188.Google Scholar
  13. 13.
    Saito, H., and Ishihara, K. (1996) Docosahexaenoic Acid Content of Fatty Acids in the Lipid of Two Species of Frigate Mackerel, Auxis rocheri and Auxis thazard, Biosci. Biotechnol. Biochem. 60, 1014–1016.Google Scholar
  14. 14.
    Ando, Y., Satake, M., and Takahashi, Y. (2000) Reinvestigation of Positional Distribution of Fatty Acids in Docosahexaenoic Acid-Rich Fish Oil Triacyl-sn-glycerols, Lipids 35, 579–582.PubMedCrossRefGoogle Scholar
  15. 15.
    Burr, M.L., Fehily, A.M., Gilbert, J.F., Rogers, S., Holliday, R.M., Sweetman, P.M., Elwood, P.C., and Deadman, N.M. (1989) Effects of Changes in Fat, Fish, and Fibre Intakes on Death and Myocardial Infarction: Diet and Re-infarction Trial (DART), Lancet2, 757–761.PubMedCrossRefGoogle Scholar
  16. 16.
    GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravivenza nell’Infarto Miocardico), Dietary Supplementation with n−3 Polyunsaturated Fatty Acids and Vitamin E After Myocardial Infarction: Results of the GISSI-Prevenzione Trial (1999) Lancet 354, 447–455.CrossRefGoogle Scholar
  17. 17.
    Leaf, A., and Weber, P.C. (1988) Medical Progress: Cardiovascular Effects of n−3 Fatty Acids, New Engl. J. Med. 318, 549–557.PubMedCrossRefGoogle Scholar
  18. 18.
    Endres, S., De Caterina, R., Schmidt, E.B., and Kristensen, S.D. (1995) n−3 Polyunsaturated Fatty Acids: Update 1995, Eur. J. Clin. Invest. 25, 629–638.PubMedGoogle Scholar
  19. 19.
    Siscovick, D.S., Raghunathan, T.E., King, I., Weinmann, S., Wicklund, K.G., Albright, J., Bovbjerg, V., Arbogast, P., Smith, H., Kushi, L.H., et al. (1995) Dietary Intake and Cell Membrane Levels of Long Chain n−3 Polyunsaturated Fatty Acids and the Risk of Primary Cardiac Arrest, J. Am. Med. Assoc. 274, 1363–1367.CrossRefGoogle Scholar
  20. 20.
    Connor, W.E. (2001) n−3 Fatty Acids from Fish Oil: Panacea or Nostrum? Am. J. Clin. Nutr. 74, 415–416.PubMedGoogle Scholar
  21. 21.
    Madsen, T., Skou, H.A., Hansen, V.E., Fog, L., Christensen, J.H., Toft, E., and Schmidt, E.B. (2001) C-Reactive Protein, Dietary n−3 Fatty Acids, and the Extent of Coronary Artery Disease, Am. J. Cardiol. 88, 1139–1142.PubMedCrossRefGoogle Scholar
  22. 22.
    Das, U.N. (2000) Beneficial Effect(s) of n−3 Fatty Acids in Cardiovascular Diseases: but, Why and How?, Prostaglandins, Leukotrienes Essent. Fatty Acids 63, 351–362.CrossRefGoogle Scholar
  23. 23.
    Glass, R.L., Krick, T.P., Sand, D.M., Rahn, C.H., and Schlenk, H. (1975) Furanoid Fatty Acids from Fish Lipids, Lipids 10, 695–702.PubMedCrossRefGoogle Scholar
  24. 24.
    Okada, Y., Kaneko, M., and Okajima, H. (1996) Hydroxy Radical Scavenging Activity of Naturally Occurring Furan Fatty Acids, Biol. Pharm. Bull. 19, 1607–1610.PubMedGoogle Scholar
  25. 25.
    Okada, Y., Okajima, H., Konishi, H., Terauchi, M., Ishii, K., Liu, I.M., and Watanabe, H. (1990) Antioxidant Effect of Naturally Occurring Furan Fatty Acids on Oxidation of Linoleic Acid in Aqueous Dispersion, J. Am. Oil Chem. Soc. 67, 858–862.CrossRefGoogle Scholar
  26. 26.
    Glass, R.L., Krick, T.P., and Eckhardt, A.E. (1974) New Series of Fatty Acids in Northern Pike (Esox lucius), Lipids 9, 1004–1008.PubMedCrossRefGoogle Scholar
  27. 27.
    Kluytmans, J.H.F.M., and Zandee, D.I. (1973) Lipid Metabolism in the Northern Pike (Esox lucius L.)—II. The Composition of the Total Lipids and of the Fatty Acids Isolated from Lipid Classes and Some Tissues of the Northern Pike, Comp. Biochem. Physiol. 44B, 459–466.Google Scholar
  28. 28.
    Glass, R.L., Krick, T.P., Olson, D.L., and Thorson, R.L. (1977) The Occurrence and Distribution of Furan Fatty Acids in Spawning Male Freshwater Fish, Lipids 12, 828–836.PubMedCrossRefGoogle Scholar
  29. 29.
    Gunstone, F.D., Wijesundera, R.C., and Scrimgeour, C.M. (1978) The Component Acids of Lipids from Marine and Freshwater Species with Special Reference to Furan-Contining Acids, J. Sci. Food Agric. 29, 539–550.CrossRefGoogle Scholar
  30. 30.
    Gunstone, F.D., Wijesundera, R.C., Love, R.M., and Ross, D. (1976) Relative Enrichment of Furan Containing Fatty Acids in the Liver of Starving Cod, J. Chem. Soc. Chem. Commun., 630–631.Google Scholar
  31. 31.
    Ishii, K., Okajima, H., Okada, Y., and Watanabe, H. (1988) Studies on Furan Fatty Acids of Salmon Roe Phospholipids, J. Biochem. (Tokyo) 103, 836–839.Google Scholar
  32. 32.
    Ota, T., and Takagi, T. (1990) Changes in Furan Fatty Acids of Testis Lipids of Chum Salmon Oncorhynchus keta at Spawning Season, Nippon Suisan Gakkaishi 56, 153–157.Google Scholar
  33. 33.
    Sasaki, S., Ota, T., and Takagi, T. (1989) Composition of Fatty Acids in the Lipids of Chum Salmon During Spawning Migration, Nippon Suisan Gakkaishi 55, 2191–2197.Google Scholar
  34. 34.
    Ota, T., and Takagi, T. (1992) Furan Fatty Acids in the Lipids of the Cresthead Flounder, Nippon Suisan Gakkaishi 58, 721–725.Google Scholar
  35. 35.
    Ota, T., and Takagi, T. (1991) Furan Fatty Acids of Lipids from Serum and Sexual Organs of Chum Salmon, Nippon Suisan Gakkaishi 57, 1565–1571.Google Scholar
  36. 36.
    Wahl, H.G., Liebich, H.M., and Hoffmann, A. (1994) Identification of Fatty Acid Methyl Esters as Minor Components of Fish Oil by Multidimensional GC-MSD: New Furan Fatty Acids, J. High Resolut. Chromatogr. 17, 308–311.CrossRefGoogle Scholar
  37. 37.
    Scrimgeour, C.M. (1977) Quantitative Analysis of Furanoid Fatty Acids in Crude and Refined Cod Liver Oil, J. Am. Oil Chem. Soc. 54, 210–211.PubMedGoogle Scholar
  38. 38.
    Dembitsky, V.M., and Rezanka, T. (1996) Furan Fatty Acids of Some Brackish Invertebrates from the Caspian Sea, Comp. Biochem. Physiol. 114B, 317–320.Google Scholar
  39. 39.
    Okajima, H., Ishii, K., and Watanabe, H. (1984) Studies in Lipids of Crayfish, Procambarus clarkii I. Furanoid Fatty Acids, Chem. Pharm. Bull. 32, 3281–3286.PubMedGoogle Scholar
  40. 40.
    Ishii, K., Okajima, H., Koyamatsu, T., Okada, Y., and Watanabe, H. (1988) The Composition of Furan Fatty Acids in the Crayfish, Lipids 23, 694–700.CrossRefGoogle Scholar
  41. 41.
    Ishii, K., Okajima, H., Okada, Y., Konishi, H., and Watanabe, H. (1989) Fatty Chain Composition of Phospholipids from Muscle of Crayfish, Procambarus clarkii, Chem. Pharm. Bull. 37, 1564–1567.Google Scholar
  42. 42.
    Ciminiello, P., Fattorusso, E., Magno, S., Mangoni, A., Ialenti, A., and Di Rosa, M. (1991) Furan Fatty Acid Steryl Esters from the Marine Sponge Dictyonella incisa Which Show Inflammatory Activity, Experientia 47, 739–743.CrossRefGoogle Scholar
  43. 43.
    Shirasaka, N., Nishi, K., and Shimizu, S. (1995) Occurrence of Furan Fatty Acids in Marine Bacteria, Biochim. Biophys. Acta 1258, 225–227.PubMedGoogle Scholar
  44. 44.
    Shirasaka, N., Nishi, K., and Shimizu, S. (1997) Biosynthesis of Furan Fatty Acids (F-acids) by a Marine Bacterium, Shewanella putrefaciens, Biochim. Biophys. Acta 1346, 253–260.PubMedGoogle Scholar
  45. 45.
    Carballeira, N.M., Guzmán, A., Nechev, J.T., Lahtchev, K., Ivanova, A., and Stefanov, K. (2000) Unusual Lipid Composition of a Bacillus sp. Isolated from Lake Pomorie in Bulgaria, Lipids 35, 1371–1375.PubMedCrossRefGoogle Scholar
  46. 46.
    Kazlauskas, R., Murphy, P.T., Wells, R.J., and Gregson, R.P. (1982) Two New Furans from the Brown Alga Acrocarpia paniculata: The Use of 4-Phenyl-4H-1,2,4-triazoline-3,5-dione to Determine the Substitution Pattern of a Furan, Austral. J. Chem. 35, 165–170.CrossRefGoogle Scholar
  47. 47.
    Batna, A., Scheinkönig, J., and Spiteller, G. (1993) The Occurence of Furan Fatty Acids in Isochrysis sp. and Pheeodactylum tricornutum, Biochim. Biophys. Acta 1166, 171–176.PubMedGoogle Scholar
  48. 48.
    Hasma, H., and Subramaniam, A. (1978) The Occurrence of a Furanoid Fatty Acid in Hevea brasiliensis Latex, Lipids 13, 905–907.CrossRefGoogle Scholar
  49. 49.
    Hannemann, K., Puchta, V., Simon, E., Ziegler, H., Ziegler, G., and Spiteller, G. (1989) The Common Occurrence of Furan Fatty Acids in Plants, Lipids 24, 296–298.PubMedCrossRefGoogle Scholar
  50. 50.
    Scheinkönig, J., and Spiteller, G. (1993) F-Säure-haltige Phospholipidmoleküle in Zuckerrohrzelle, Liebigs Ann. Chem., 121–124.Google Scholar
  51. 51.
    Guth, H., and Grosch, W. (1992) Furan Fatty Acids in Butter and Butter Oil, Lebensm. Unters. Forsch. 194, 360–362.CrossRefGoogle Scholar
  52. 52.
    Boselli, E., Grob, K., and Lercker, G. (2000) Determination of Furan Fatty Acids in Extra Virgin Olive Oil, J. Agric. Food Chem. 48, 2868–2873.PubMedCrossRefGoogle Scholar
  53. 53.
    Schödel, R., and Spiteller, G. (1987) Über das Vorkommen von F-Säuren in Rinderleber und deren enzymatischen Abbau bei Gewebeverletzung, Liebigs Ann. Chem., 459–462.Google Scholar
  54. 54.
    Puchta, V., Spiteller, G., and Weidinger, H. (1988) F-Säuren: Eine bisher unbekannte Komponente der Phospholipide des Humanblutes, Liebigs Ann. Chem., 25–28.Google Scholar
  55. 55.
    Puchta, V., and Spiteller, G. (1988) Struktur der F-Säuren enthaltenden Plasmalipide, Liebigs Ann. Chem., 1145–1147.Google Scholar
  56. 56.
    Wahl, H.G., Chrzanowski, A., Müller, C., Liebich, H.M., and Hoffmann, A. (1995) Identification of Furan Fatty acids in Human Blood Cells and Plasma by Multi-dimensional Gas Chromatography-Mass Spectrometry, J. Chromatogr. A 697, 453–459.CrossRefGoogle Scholar
  57. 57.
    Morris, L.J., Marshall, M.O., and Kelly, W. (1966) A Unique Furanoid Fatty Acid from Exocarpus Seed Oil, Tetrahedron Lett. 16, 4249–4253.CrossRefGoogle Scholar
  58. 58.
    Gunstone, F.D., and Wijesundera, R.C. (1979) Fatty Acids, Part 54. Some Reactions of Long-Chain Oxygenated Acids with Special Reference to Those Furnishing Furanoid Acids, Chem. Phys. Lipids 24, 193–208.CrossRefGoogle Scholar
  59. 59.
    Hidalgo, F.J., and Zamora, R. (1995) Epoxyoxoene Fatty Esters: Key Intermediates for the Synthesis of Long-chain Pyrrole and Furan Fatty Esters, Chem. Phys. Lipids 77, 1–11.CrossRefGoogle Scholar
  60. 60.
    Yurawecz, M.P., Sehat, N., Mossoba, M.M., Roach, J.A.G., and Ku, Y. (1997) Oxidation Products of Conjugated Linoleic Acid and Furan Fatty Acids, in New Techniques and Applications in Lipid Analysis, edited by R.E. McDonald and M.M. Mossoba, pp. 183–215, AOCS Press, Champaign.Google Scholar
  61. 61.
    Schödel, R., and Spiteller, G. (1985) Über die Strukturaufklärung von (Hydroxy-oxo-cyclopentenyl)alkansäuren, den Aldolkondensationsprodukten von Dioxoencarbonsäuren aus Rinderleber, Helv. Chim. Acta 68, 1624–1634.CrossRefGoogle Scholar
  62. 62.
    Jandke, J., Schmidt, J., and Spiteller G. (1988) Über das Verhalten von F-Säuren bei der Oxidation mit Lipoxydase in Anwesenheit von SH-haltigen Verbindungen, Liebigs Ann. Chem., 29–34.Google Scholar
  63. 63.
    Jandke, J., and Spiteller, G. (1988) (Dimethylamino)ethylester von Fettsäuren: bisher unbekannte Naturstoffe, Liebigs Ann. Chem., 1057–1060.Google Scholar
  64. 64.
    Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  65. 65.
    Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method for Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.PubMedGoogle Scholar
  66. 66.
    Schlenk, H. (1961) Crystallization of Fatty Acids, J. Am. Oil Chem. Soc. 38, 728–736.Google Scholar
  67. 67.
    Gerlach, H., and Wetter, H. (1974) Synthesen der Nonactinsäure, Helv. Chim. Acta 57, 2306–2321.CrossRefGoogle Scholar
  68. 68.
    Spiteller, M., and Spiteller, G. (1979) Trennung und Charakterisierung saurer Harnbestandteile, J. Chromatogr. 164, 253–317.PubMedGoogle Scholar
  69. 69.
    Spiteller, M., Spiteller, G., and Hoyer, G.-A. (1980) Urofuransäureneine bisher unbekannte Klasse von Stoffwechselprodukten, Chem. Ber. 113, 699–709.Google Scholar
  70. 70.
    Pfordt, J., Thoma, H., and Spiteller, G. (1981) Identifizierung, Strukturableitung und Synthese bisher unbekannter Urofuransäuren im menschlichen Blut, Liebigs Ann. Chem., 2298–2308.Google Scholar
  71. 71.
    Bauer, S., and Spiteller, G. (1985) Strukturaufklärung und Synthese bisher unbekannter Furancarbonsäuren aus Humanurin, Liebigs Ann. Chem., 813–821.Google Scholar
  72. 72.
    Wahl, H.G., Tetschner, B., and Liebich, H.M. (1992) The Effect of Dietary Fish Oil Supplementation on the Concentration of 3-Carboxy-4-methyl-5-propyl-2-furanprionic Acid in Human Blood and Urine, J. High Resolut. Chromatogr. 15, 815–818.CrossRefGoogle Scholar
  73. 73.
    Schödel, R., Dietel, P., and Spiteller, G. (1986) F-Säuren als Vorstufen der Urofuransäuren, Liebigs Ann. Chem., 127–131.Google Scholar
  74. 74.
    Sand, D.M., Schlenk, H., Thoma, H., and Spiteller, G. (1983) Catabolism of Fish Furan Fatty Acids to Urofuran Acids in the Rat, Biochim. Biophys. Acta 751, 455–461.PubMedGoogle Scholar
  75. 75.
    Bauer, S., and Spiteller, G. (1985) Furancarbonsäuren aus Rinderharn, Helv. Chim. Acta 68, 1635–1638.CrossRefGoogle Scholar
  76. 76.
    Groweiss, A., and Kashman, Y. (1978) A New Furanoid Fatty Acid from the Soft Corals Sarcophyton glaucum and gemmatum, Experentia 33, 299.CrossRefGoogle Scholar
  77. 77.
    Liebich, H.M., Pickert, A., and Tetschner, B. (1984) Gas Chromatographic and Gas Chromatographic-Mass Spectrometric Analysis of Organic Acids in Plasma of Patients with Chronic Renal Failure, J. Chromatogr. 289, 259–266.PubMedCrossRefGoogle Scholar
  78. 78.
    Mabuchi, H., and Nakahashi, H. (1988) Inhibition of Hepatic Glutathione S-Transferase by a Major Endogenous Ligand Substance Present in Uremic Serum, Nephron 49, 281–283.PubMedGoogle Scholar
  79. 79.
    Henderson, S.J., and Lindup, W.E. (1990) Interaction of 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic Acid, an Inhibitor of Plasma Protein Binding in Uraemia, with Human Albumin, Biochem. Pharmacol. 40, 2543–2548.PubMedCrossRefGoogle Scholar
  80. 80.
    Costigan, M.G., and Lindup, W.E. (1996) Plasma Clearance in the Rat of Furan Dicarboxylic Acid Which Accumulates in Uremia, Kidney Int. 49, 634–638.PubMedGoogle Scholar
  81. 81.
    Niwa, T., Takeda, N., Maeda, K., Shibata, M., and Tatematsu, A. (1988) Accumulation of Furancarboxylic Acids in Uremic Serum as Inhibitors of Drug Binding, Clin. Chim. Acta. 173, 127–138.PubMedCrossRefGoogle Scholar
  82. 82.
    Liebich, H.M., Bubeck, J.I., Pickert, A., Wahl, G., and Scheiter, A. (1990) Hippuric Acid and 3-Carboxy-4-methyl-5-propyl-2-furanpropionic Acid in Serum and Urine, Analytical Approaches and Clinical Relevance in Kidney Diseases, J. Chromatogr. 500, 615–627.PubMedCrossRefGoogle Scholar
  83. 83.
    Henderson, S.J., and Lindup, E. (1992) Renal Organic Acid Transport: Uptake by Rat Kidney Slices of a Furan Dicarboxylic Acid Which Inhibits Plasma Protein Binding of Acidic Ligands in Uremia, J. Pharmacol. Exp. Ther. 263, 54–60.PubMedGoogle Scholar
  84. 84.
    Sato, M., Koyama, M., Miyazaki, T., and Niwa, T. (1996) Reduced Renal Clearance of Furancarboxylic Acid, a Major Albumin-Bound Organic Acid, in Undialyzed Uremic Patients, Nephron 74, 419–421.PubMedGoogle Scholar
  85. 85.
    Niwa, T., Aiuchi, T., Nakaya, K., Emoto, Y., Miyazaki, T., and Maeda, K. (1993) Inhibition of Mitochondrial Respiration by Furancarboxylic Acid Accumulated in Uremic Serum in Its Albumin-Bound and Non-dialyzable Form, Clin. Nephrol. 39, 92–96.PubMedGoogle Scholar
  86. 86.
    Niwa, T., Yazawa, T., Kodama, T., Uehara, Y., Maeda, K., and Yamada, K. (1990) Efficient Removal of Albumin-Bound Furancarboxylic Acid, an Inhibitor of Erythropoiesis, by Continuous Ambulatory Peritoneal Dialysis, Nephron, 56, 241–245.PubMedGoogle Scholar
  87. 87.
    Tsutsumi, Y., Maruyama, T., Takadate, A., Shimada, H., and Otagiri, M. (2000) Decreased Bilirubin-Binding Capacity in Uremic Serum Caused by an Accumulation of Furan Dicarboxylic Acid, Nephron 85, 60–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Costigan, M.G., O’Callaghan, C.A., and Lindup, W.E. (1996) Hypothesis: Is Accumulation of a Furan Dicarboxylic Acid (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid) Related to the Neurological Abnormalities in Patients with Renal Failure? Nephron 73, 169–173.PubMedCrossRefGoogle Scholar
  89. 89.
    Koval’chuk, L.V., Pavlyuk, A.S., Shchiglenko, N.A., Sinyukhin, V.N., Kharlamova, L.A., and Chirun, N.V. (1999) Polyfurancarbonic Acid Inhibits Proliferation and Induces Apoptosis of Cultured Human T Lymphocytes in vitro, Bull. Exp. Biol. Med. 6, 613–614.CrossRefGoogle Scholar
  90. 90.
    Mabuchi, H., and Nakahashi, H. (1987) Determination of 3-Carboxyl-4-methyl-5-propyl-2-furanpropanoic Acid, a Major Endogenous Ligand Substance in Uremic Serum, by High-Performance Liquid Chromatography with Ultraviolet Detection, J. Chromatogr. 415, 110–117.PubMedGoogle Scholar
  91. 91.
    Pickert, A., Bäuerle, A., and Liebich, H.M. (1989) Determination of Hippuric Acid and Furanic Acid in Serum of Dialysis Patients and Control Persons by High-Performance Liquid Chromatography, J. Chromatogr. 495, 95–104.PubMedGoogle Scholar
  92. 92.
    Niwa, T., Kawagishi, I., and Ohya, N. (1994) Rapid Assay for Furancarboxylic Acid Accumulated in Uremic Serum Using High-Performance Liquid Chromatography and On-line Mass Spectrometry, Clin. Chim. Acta 226, 89–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Tanaka, T., Ikebuchi, H., Sawada, J.-I., and Tanaka, Y. (1998) Production of Antiserum for Sensitive Enzyme-Linked Immunosorbent Assay of 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic Acid by Chemiluminescence, Lipids 33, 733–736.PubMedCrossRefGoogle Scholar
  94. 94.
    Sassa, T., Matsuno, H., Niwa, M., Kozawa, O., Takeda, N., Niwa, T., Kumada, T., and Uematsu, T. (2000) Measurement of Furancarboxylic Acid, a Candidate for Uremic Toxin, in Human Serum, Hair, and Sweat, and Analysis of Pharmacological Actions in vitro, Arch. Toxicol. 73, 649–654.PubMedCrossRefGoogle Scholar
  95. 95.
    Sand, D.M., Glass, R.L., Olson, D.L., Pike, H.M., and Schlenk, H. (1984) Metabolism of Furan Fatty Acids in Fish, Biochim. Biophys. Acta 793, 429–436.PubMedGoogle Scholar
  96. 96.
    Gorst-Allman, C.P., Puchta, V., and Spiteller, G. (1988) Investigations of the Origin of the Furan Fatty Acids (F-acids), Lipids 23, 1032–1036.PubMedCrossRefGoogle Scholar
  97. 97.
    Dietel, P., and Spiteller, G. (1988) Inkubation von 2,5-disubstituierten F-Säuren mit Rinderleberhomogenisat, Liebigs Ann. Chem., 397–403.Google Scholar
  98. 98.
    Scheinkönig, J., and Spiteller, G. (1993) Herkunft des Kohlenstoff-Grundseletts von F-Säuren, Liebigs Ann. Chem., 251–253.Google Scholar
  99. 99.
    Scheinkönig, J., and Spiteller, G. (1991) Herkunft der Methylsubstituenten in F-Säuren, Liebigs Ann. Chem., 451–453.Google Scholar
  100. 100.
    Scheinkönig, J., Hannemann, K., and Spiteller, G. (1995) Methylation of the β-Positions of the Furan Ring in F-Acids, Biochim. Biophys. Acta 1254, 73–76.PubMedGoogle Scholar
  101. 101.
    Batna, A., and Spiteller, G. (1991) Herkunft des Sauerstoffatoms im Furanring von F-Säuren, Liebigs Ann. Chem., 861–863.Google Scholar
  102. 102.
    Rahn, C.H., Sand, D.M., Wedmid, Y., Schlenk, H., Krick, T.P., and Glass, R.L. (1979) Synthesis of Naturally Occurring Furan Fatty Acids, J. Org. Chem. 44, 3420–3424.CrossRefGoogle Scholar
  103. 103.
    Prasselsberger, G. (1985) Synthese von tetrasubstituierten Furan Fettsäuren, Diploma Thesis, pp. 11–18, University of Bayreuth, Germany.Google Scholar
  104. 104.
    Baumann, M.E., and Bosshard, H. (1978) Decarboxylative Dimerization of Maleic Acid Anhydride to Dimethyl Maleic Anhydride, Helv. Chim. Acta 61, 2751–2753.CrossRefGoogle Scholar
  105. 105.
    Rahn, C.H., Sand, D.M., Krick, T.P., Glass, R.L., and Schlenk, H. (1981) Synthesis of Radioactive Furan Fatty Acids, Lipids 16, 360–364.CrossRefGoogle Scholar
  106. 106.
    Bach, T., and Krüger, L. (1998) Sequential Pd(0)-Catalyzed Reactions for the Construction of Multiple Substituted Furans. A Short Synthesis of the F5 Furan Fatty Acid, Tetrahedron Lett. 39, 1729–1732.CrossRefGoogle Scholar
  107. 107.
    Lie Ken Jie, M.S.F., and Ahmad, F. (1981) Conversion of Linoleic and Latex Furanoid Acid to Fish C18 Dimethyl Furanoid Isomeres, J. Chem. Soc. Commun., 1110–1111.Google Scholar
  108. 108.
    Graff, G., Gellerman, J.L., Sand, D.M., and Schlenk, H. (1984) Inhibition of Blood Platelet Aggregation by Dioxo-ene Compounds, Biochim. Biophys. Acta 799, 143–150.PubMedGoogle Scholar
  109. 109.
    Boyer, R.F., Lindstrom, C.G., Darby, B., and Hylarides, M. (1975) The Peracid Oxidation of Singlet Oxygen Acceptors, Tetrahedron Lett. 16, 4111–4114.CrossRefGoogle Scholar
  110. 110.
    Takayama, K., Noguchi, T., and Nakano, M. (1977) Reactivities of Diphenylfuran (a singlet oxygen trap) with Singlet Oxygen and Hydroxyl Radical in Aqueous Systems, Biochem. Biophys. Res. Commun. 75, 1052–1058.PubMedCrossRefGoogle Scholar
  111. 111.
    Boyer, R.F., Litts, D., Kostishak, J., Wijesundera, R.C., and Gunstone, F.D. (1979) The Action of Lipoxygenase-1 on Furan Derivatives, Chem. Phys. Lipids 25, 237–246.PubMedCrossRefGoogle Scholar
  112. 112.
    Batna, A., and Spiteller, G. (1994) Oxidation of Furan Fatty Acids by Soybean Lipoxygenase-1 in the Presence of Linoleic Acid, Chem Phys. Lipids. 70, 179–185.PubMedCrossRefGoogle Scholar
  113. 113.
    Halliwell, B., and Gutteridge, J.M.C. (1990) Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview, Methods Enzymol. 186, 1–85.PubMedGoogle Scholar
  114. 114.
    Gan, Q.-F., Witkop, G.L., Sloane, D.L., Straub, K.M., and Sigal, E. (1995) Identification of a Specific Methionine in Mammalian 15-Lipoxygenase Which Is Oxygenated by the Enzyme-Product 13-HPODE: Dissociation of Sulfoxide Formation from Self-Inactivation, Biochemistry 34, 7069–7079.PubMedCrossRefGoogle Scholar
  115. 115.
    Fuchs, C., and Spiteller, G. (2000) Iron Release from the Active Site of Lipoxygenase, Z. Naturforsch. 55c, 643–648.Google Scholar
  116. 116.
    Marnett, L.J. (1987) Peroxyl Free Radicals: Potential Mediators of Tumor Initiation and Promotion, Carcinogenesis 8, 1365–1373.PubMedCrossRefGoogle Scholar
  117. 117.
    Welch, K.D., Davis, T.Z., Van Eden, M.E., and Aust, S.D. (2002) Deleterious Iron-Mediated Oxidation of Biomolecules, Free Radic. Biol. Med. 32, 577–583.PubMedCrossRefGoogle Scholar
  118. 118.
    Spiteller, G. (1998) Linoleic Acid Peroxidation—The Dominant Lipid Peroxidation Process in Low Density Lipoprotein—and Its Relationship to Chronic Diseases, Chem. Phys. Lipids 95, 105–162.PubMedCrossRefGoogle Scholar
  119. 119.
    Ozawa, T., Sugiyama, S., Hayakawa, M., Satake, T., Taki, F., Iwata, M., and Taki, K. (1988) Existence of Leukotoxin 9,10-Epoxy-12-octadecenoate in Lung Lavages from Rats Breathing Pure Oxygen and from Patients with the Adutl Respiratory Distress Syndrome, Am. Rev. Respir. Dis. 137, 535–540.PubMedGoogle Scholar
  120. 120.
    Walther, U., and Spiteller, G. (1993) Zur Bildung von Ölsäureepoxid bei der Lagerung technischer Ölsäure, Fett Wiss. Technol. 95, 472–474.CrossRefGoogle Scholar
  121. 121.
    Bordoni, A., Hrelia, S., Caboni, M.F., Lercker, G., and Biagi, P.L. (1995) Incorporation of Cholesterol Oxidation Products into Cell Lipids and Their Influence on the Proliferation of Cultured Cardiomyocytes, Cardiosciences 6, 107–113.Google Scholar
  122. 122.
    Sugiyama, S., Hayakawa, M., Nagai, S., Ajioka, M., and Ozawa, T. (1987) Leukotoxin, 9,10-Epoxy-12-octadecenoate, Causes Cardiac Failure in Dogs, Life Sci. 40, 225–231.PubMedCrossRefGoogle Scholar
  123. 123.
    Nappez, C., Battu, S. and Beneytout, J.L. (1996) Trans,trans-2,4-Decadienal: Cytotoxicity and Effect on Glutathione Level in Human Erythroleukemia (HEL) Cells, Cancer Lett. 99, 115–119.PubMedCrossRefGoogle Scholar
  124. 124.
    Galliard, T. (1975) Degradation of Plant Lipids by Hydrolytic and Oxidative Enzymes, Annu. Proc. Phytochem. Soc. 12, 319–357.Google Scholar
  125. 125.
    Spiteller, G. (1996) Enzymic Lipid Peroxidation—A Consequence of Cell Injury?, Free Radic. Biol. Med. 21, 1003–1009.PubMedCrossRefGoogle Scholar
  126. 126.
    Siddiqui, R.A., Labarrere, C.A., and Kovacs, R.J. (2000) Prevention of Cardiac Hypertrophy with Omega 3-Fatty Acids: Potential Cell Signaling Targets, Curr. Org. Chem. 4, 1145–1157.CrossRefGoogle Scholar
  127. 127.
    Batna, A., and Spiteller, G. (1994) Effects of Soybean Lipoxygenase-1 on Phosphatidylcholines Containing Furan Fatty Acids, Lipids 29, 397–403.PubMedCrossRefGoogle Scholar
  128. 128.
    Ishii, K., Okajima, H., Okada, Y., and Watanabe, H. (1989) Effects of Phosphatidylcholines Containing Furan Fatty Acid on Oxidation in Multilamellar Liposomes, Chem. Pharm. Bull. 37, 1396–1398.Google Scholar
  129. 129.
    Spreitzer, H., Schmidt, J., and Spiteller, G. (1989) Vergleichende Untersuchungen der Fettsäureoxidation in Gemüse in Abhängigkeit von der Vorbehandlung, Fat Sci. Technol. 91, 108–113.Google Scholar
  130. 130.
    Wills, E.D. (1966) Mechanism of Lipid Peroxide Formation in Animal Tissues, Biochem. J. 99, 667–676.PubMedGoogle Scholar
  131. 131.
    Kießling, U., and Spiteller, G. (1998) The Course of Enzymatically Induced Lipid Peroxidation in Homogenized Porcine Kidney Tissue, Z. Naturforsch. 53c, 431–437.Google Scholar
  132. 132.
    Imbusch, R., and Mueller, M.J. (2000) Formation of Isoprostane F2-Like Compounds (phytoprostanes F1) from a-Linolenic Acid in Plants, Free Radic. Biol. Med. 28, 720–726.PubMedCrossRefGoogle Scholar
  133. 133.
    Masanatz, C., Guth, H., and Grosch, W. (1998) Fishy and Hay-Like Off-Flavours of Dry Spinach, Lebensm. Unters. Forsch. A 206, 108–113.CrossRefGoogle Scholar
  134. 134.
    Ohki, T., Maeda, K., Sakakibara, J., Suzuki, E., and Yamanaka, N. (1993) Structural Analysis of Oxidation Products of Urofuran Acids by Hypochlorous Acid, Lipids 28, 35–41.PubMedCrossRefGoogle Scholar
  135. 135.
    Harris, W.S. (1989) Fish Oils and Plasma Lipid and Lipoprotein Metabolism in Humans: A Critical Review, J. Lipid Res. 30, 785–807.PubMedGoogle Scholar
  136. 136.
    Marchioli, R., Schweiger, C., Tavazzi, L., and Valagussa, F. (2000) Efficacy of n−3 Polyunsaturated Fatty Acids After Myocardial Infarction: Results of GISSI-Prevenzione Trial, Lipids 36 (Suppl.) S119–S126.Google Scholar
  137. 137.
    Pepe, S., and McLennan, P.L. (2002) Cardiac Membrane Fatty Acid Composition Modulates Myocardial Oxygen Consumption and Postischemic Recovery of Contractile Function, Circulation 105, 2303–2308.PubMedCrossRefGoogle Scholar
  138. 138.
    Yaqoob, P., and Calder, P.C. (2003) n−3 Polyunsaturated Fatty Acids and Inflammation in the Arterial Wall, J. Med. Res. 8, 337–354.Google Scholar
  139. 139.
    Roche, H.M., and Gibney, M.J. (1999) Long-chain n−3 Polyunsaturated Fatty Acids and Triacylglycerol Metabolism in the Postprandial State, Lipids 34, (Suppl.), S259-S265.PubMedGoogle Scholar
  140. 140.
    Harris, W.S. (1999) n−3 Fatty Acids and Human Lipoprotein Metabolism: An Update, Lipids 34 (Suppl.), S257-S258.PubMedGoogle Scholar
  141. 141.
    Leifert, W.R., Dorian, C.L., Jahangiri, A., and McMurchie, E.J. (2001) Dietary Fish Oil Prevents Asynchronous Contractility and Alters Ca2+ Handling in Adult Rat Cardiomyocytes, J. Nutr. Biochem. 12, 365–376.PubMedCrossRefGoogle Scholar
  142. 142.
    Bjerregaard, P., Pedersen, H.S., and Mulvad, G. (2000) The Associations of a Marine Diet with Plasma Lipids, Blood Glucose, Blood Pressure and Obesity Among the Inuit in Greenland, Eur. J. Clin. Nutr. 54, 732–737.PubMedCrossRefGoogle Scholar
  143. 143.
    Abbey, M., Belling, B., Noakes, M., Hirata, F., and Nestel, P.J. (1993) Oxidation of Low-Density Lipoproteins: Intraindividual Variety and the Effect of Dietary Linoleate Supplementation, Am. J. Clin. Nutr. 57, 391–398.PubMedGoogle Scholar
  144. 144.
    Reaven, P.D., Grasse, B.J., and Tribble, D.L. (1994) Effects of Linoleate-Enriched and Oleate-Enriched Diets in Combination with a-Tocopherol on the Susceptibility of LDL and LDL Subfractions on Oxidative Modification in Humans Arterioscler. Thromb. 14, 557–566.PubMedGoogle Scholar
  145. 145.
    Leigh-Firbank, E.C., Minihane, A.M., Leake, D.S., Wright, J.W., Murphy, M.C., Griffin, B.A., and Williams, C.M. (2002) Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oils: Differential Associations with Lipid Responses, Br. J. Nutr. 87, 435–445.PubMedCrossRefGoogle Scholar
  146. 146.
    Song, J.H., Fujimoto, K., and Miyazawa, T. (2000) Polyunsaturated (n−3) Fatty Acids Susceptible to Peroxidation Are Increased in Plasma and Tissue Lipids of Rats Fed Docosahexaenoic Acid-Containing Oils, J. Nutr. 130, 3028–3033.PubMedGoogle Scholar
  147. 147.
    Suzukawa, M., Abbey, M., Howe, P.R.C., and Nestel, P.J., (1995) Effect of Fish Oil Fatty Acids on Low Density Lipoprotein Size, Oxidizability, and Uptake by Macrophages, J. Lipid Res. 36, 473–484.PubMedGoogle Scholar
  148. 148.
    Goldstein, J.L., and Brown, M. (1977) The Low Density Lipoprotein Pathway and Its Relation to Atherosclerosis, Annu. Rev. Biochem. 46, 897–930.PubMedCrossRefGoogle Scholar
  149. 149.
    Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., and Steinberg, D. (1984) Modification of Low Density Lipoprotein by Endothelial Cells Involves Lipid Peroxidation and Degradation of Low Density Lipoprotein Phospholipids, Proc. Natl. Acad. Sci. USA 81, 3883–3887.PubMedCrossRefGoogle Scholar
  150. 150.
    Cathcart, M.K., Morel, D.W., and Chisholm, G.M. III (1985) Monocytes and Neutrophiles Oxidize Low Density Lipoprotein Making It Cytotoxic, J. Leucocyte Biol. 38, 341–350.Google Scholar
  151. 151.
    Iuliano, L. (2001) The Oxidant Hypothesis of Atherogenesis, Lipids 36 (Suppl.), S41-S44.PubMedCrossRefGoogle Scholar
  152. 152.
    Hardwick, S.J., Hegyi, L., Clare, K., Law, N.S., Keri, L.H., Carpenter, L.H., Mitchinson, M.J., and Skepper, J.N. (1996) Apoptosis in Human Monocyte-Macrophages Exposed to Oxidized Low Density Lipoprotein, J. Pathol. 179, 294–302.PubMedCrossRefGoogle Scholar
  153. 153.
    Wintergerst, E.S., Jelk, J., Rahner, C., and Asmis, R. (2000) Apoptosis Induced by Oxidized Low Density Lipoprotein in Human Monocyte-Derived Macrophages Involves CD36 and Activation of Caspase-3, Eur. J. Biochem. 267, 6050–6058.PubMedCrossRefGoogle Scholar
  154. 154.
    Frankel, E.N. (1998) Lipid Oxidation, The Oily Press, Dundee.Google Scholar
  155. 155.
    Berliner, J.A., Territo, M.C., Sevanian, A., Ramin, S., Kim, J.A., Bamshad, B., Esterson, M., and Fogelman, A.M. (1990) Minimally Modified Low Density Lipoprotein Stimulates Monocyte Endothelial Interactions, J. Clin. Invest. 85, 1260–1266.PubMedCrossRefGoogle Scholar
  156. 156.
    Podrez, E.A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P.J., Shan, L., Gugiu, B., Fox, P.L. et al. (2002) Identification of a Novel Family of Oxidized Phospholipids That Serve as Ligands for the Macrophage Scavenger Receptor CD36, J. Biol. Chem. 277, 38503–38516.PubMedCrossRefGoogle Scholar
  157. 157.
    Folcik, V.A., and Cathcart, M.K. (1994) Predominance of Esterified Hydroperoxyl-Linoleic Acid in Human Monocyte-Oxidized LDL, J. Lipid Res. 35, 1570–1582.PubMedGoogle Scholar
  158. 158.
    Watson, A.D., Leitinger, N., Navab, M., Faull, K.F., Hörkkö, S., Witzum, J.L., Palinski, W., Schwenke, D., Salomon, R.G., Sha, W. et al. (1997) Structural Identification by Mass Spectrometry of Oxidized Phospholipids in Minimally Oxidized Low Density Lipoprotein That Induce Monocyte/Endothelial Interactions and Evidence for Their Presence in vivo, J. Biol. Chem. 272, 13597–13607.PubMedCrossRefGoogle Scholar
  159. 159.
    Spiteller, D., and Spiteller, G. (2000) Oxidation of Linoleic Acid in Low-Density Lipoprotein: An Important Event in Atherogenesis, Angew. Chem. Int. Ed. 39, 585–589.CrossRefGoogle Scholar
  160. 160.
    Wang, T., and Powell, W.S. (1991) Increased Levels of Monohydroxy Metabolites of Arachidonic Acid and Linoleic Acid in LDL and Aorta from Atherosclerotic Rabbits, Biochim. Biophys. Acta 1084, 129–138.PubMedGoogle Scholar
  161. 161.
    Wander, R.C., Du, S.-H., and Thomas, D.R. (1998) Influence of Long-Chain Polyunsaturated Fatty Acids on Oxidation of Low Density Lipoprotein, Prosaglandins. Leukotrienes, Essent. Fatty Acids. 59, 143–151.CrossRefGoogle Scholar
  162. 162.
    Parthasarathy, S., Khoo, J.C., Miller, E., Barnett, J., Witztum, J.L., and Steinberg, D. (1990) Low Density Lipoprotein Rich in Oleic Acid Is Protected Against Oxidative Modification: Implications for Dietary Prevention of Atherosclerosis, Proc. Natl. Acad. Sci. USA 87, 3894–3898.PubMedCrossRefGoogle Scholar
  163. 163.
    Esterbauer, H., Jürgens, G., Quehenberger, O., and Koller, E. (1987) Autoxidation of Human Low Density Lipoprotein: Loss of Polyunsaturated Fatty Acids and Vitamin E and Generation of Aldehydes, J. Lipid Res. 28, 495–509.PubMedGoogle Scholar
  164. 164.
    Mlakar, A., and Spiteller, G. (1994) Reinvestigation of Lipid Peroxidation of Linolenic Acid, Biochim. Biophys. Acta. 1214, 209–220.PubMedGoogle Scholar
  165. 165.
    Spiteller, P., Kern, W., Reiner, J., and Spiteller, G. (2001) Aldehydic Lipid Peroxidation Products Derived from Linoleic Acid, Biochim. Biophys. Acta. 1531, 188–208.PubMedGoogle Scholar
  166. 166.
    Poli, G., and Schaur, R.J. (2000) 4-Hydroxynonenal in the Pathomechanisms of Oxidative Stress, Life 50, 315–321.PubMedGoogle Scholar
  167. 167.
    Thomas, M.J., Thornburg, T., Manning, J., Hooper, K., and Ruddel, L.L. (1994) Fatty Acid Composition of Low-Density Lipoprotein Influences Its Susceptibility to Autoxidation, Biochemistry 33, 1828–1834.PubMedCrossRefGoogle Scholar
  168. 168.
    Wu, T., Geigerman, C., Lee, Y.-S. and Wander, R.C. (2002) Enrichment of LDL with EPA and DHA Decreased Oxidized LDL-Induced Apoptosis in U937 Cells, Lipids 37, 789–796.PubMedCrossRefGoogle Scholar
  169. 169.
    Higdon, J.V., Du, S.H., Lee, Y.S., Wu, T., and Wander, R.C. (2001) Supplementation of Postmenopausal Women with Fish Oil Does Not Increased Overall Oxidation of LDL ex vivo Compared to Dietary Oils Rich in Oleate and Linoleate, J. Lipid Res. 42, 407–418.PubMedGoogle Scholar
  170. 170.
    Fischer, S., Weber, P.C., and Dyerberg, J. (1986) The Prostacyclin/Thromboxane Balance Is Favourably Shifted in Greenland Eskimos, Prostaglandins 32, 235–241.PubMedCrossRefGoogle Scholar
  171. 171.
    Sanders, T.A.B., and Hinds, A. (1992) The Influence of a Fish Oil High in Docosahexaenoic Acid on Plasma Lipoprotein and Vitamin E Concentrations and Haemostatic Function in Healthy Male Volunteers, Br. J. Nutr. 68, 163–173.PubMedCrossRefGoogle Scholar
  172. 172.
    Fuchs, C.T., and Spiteller, G. (1999) 9-(3,4-Dimethyl-5-pentyl-furan-2-yl)nonanoic Acid: New Naturally Occurring Peroxidase Inhibitors, Z. Naturforsch. 54c, 932–936.Google Scholar
  173. 173.
    Steinberg, D. (1997) Low Density Lipoprotein Oxidation and Its Pathobiological Significance, J. Biol. Chem. 272, 20963–20966.PubMedCrossRefGoogle Scholar
  174. 174.
    Nara, E., Miyashita, K., and Ota, T. (1997) Oxidative Stability of Liposomes Prepared from Soybean PC, Chicken Egg PC, and Salmon Egg PC, Biosci. Biotech. Biochem. 61, 1736–1738.CrossRefGoogle Scholar
  175. 175.
    McClements, D.J., and Decker, E.A. (2000) Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems, J. Food. Sci. 65, 1270–1282.CrossRefGoogle Scholar
  176. 176.
    Nuchi, C.D., Hernandez, P., McClements, D.J., and Decker, E.A. (2002) Ability of Lipid Hydroperoxides to Partition into Surfactant Micelles and Alter Lipid Oxidation Rates in Emulsions, J. Agric. Food. Chem. 50, 5445–5449.PubMedCrossRefGoogle Scholar
  177. 177.
    Cosgrove, J.P., Church, D.F., and Pryor, W.A. (1987) The Kinetics of the Autoxidation of Polyunsaturated Fatty Acids, Lipids 22, 299–304.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2005

Authors and Affiliations

  • Gerhard Spiteller
    • 1
  1. 1.Lehrstuhl für Organische Chemie IUniversity of BayreuthBayreuthGermany

Personalised recommendations