Lipids

, Volume 39, Issue 12, pp 1147–1161

n−3 Fatty acids, inflammation, and immunity— Relevance to postsurgical and critically III patients

Articles

Abstract

Excessive or inappropriate inflammation and immunosuppression are components of the response to surgery, trauma, injury, and infection in some individuals and these can lead, progressively, to sepsis and septic shock. The hyperinflammation is characterized by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids, and other inflammatory mediators, while the immunosuppression is characterized by impairment of antigen presentation and of T helper cell type-1 responses. Long-chain n−3 FA from fish oil decrease the production of inflammatory cytokines and eicosanoids. They act both directly (by replacing arachidonic acid as an eicosanoid substrate and by inhibiting arachidonic acid metabolism) and indirectly (by altering the expression of inflammatory genes through effects on transcription factor activation). Thus, long-chain n−3 FA are potentially useful anti-inflammatory agents and may be of benefit in patients at risk of developing sepsis. As such, an emerging application of n−3 FA is in surgical or critically ill patients where they may be added to parenteral or enteral formulas. Parenteral or enteral nutrition including n−3 FA appears to preserve immune function better than standard formulas and appears to partly prevent some aspects of the inflammatory response. Studies to date are suggestive of clinical benefits from these approaches, especially in postsurgical patients.

Abbreviations

COX

cyclooxygenase

DHA

docosahexaenoic acid

EPA

eicosapentaenoic acid

HEPE

hydroxyeicosapentaenoic acid

HETE

hydroxyeicosatetraenoic acid

HLA

human leukocyte antigen

IFN

interferon

IkB

inhibitory subunit of nuclear factor kappa B

IL

interleukin

IL-1ra

interleukin-1 receptor antagonist

LOX

lipoxygenase

LT

leukotriene

NFkB

nuclear factor kappa B

PG

prostaglandin

SNPs

single nucleotide polymorphisms

Th

T helper

TNF

tumor necrosis factor

TX

thromboxane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R.M., and Sibbald, W.J. (1997) Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis, Chest 101, 1644–1655.Google Scholar
  2. 2.
    Warren, H.S. (1997) Strategies for the Treatment of Sepsis, N. Engl. J. Med. 336, 952–953.PubMedCrossRefGoogle Scholar
  3. 3.
    Angus, D.C., Linde-Zwirble, W.T., Lidicker, J., Clermont, G., Carcillo, J., and Pinsky, M.R. (2001) Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care, Crit. Care Med. 29, 1303–1310.PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman, G., Silva, E., and Vincent, J.-L. (1998) Has the Mortality of Septic Shock Changed with Time?, Crit. Care Med. 26, 2078–2086.PubMedCrossRefGoogle Scholar
  5. 5.
    Brun-Buisson, C. (2000) The Epidemiology of the Systemic Inflammatory Response Syndrome, Intensive Care Med. 26, S64-S74.PubMedCrossRefGoogle Scholar
  6. 6.
    Vervloet, M.G., Thijs, L.G., and Hack, C.E. (1998) Derangements of Coagulation and Fibrinoloysis in Critically Ill Patients with Sepsis and Septic Shock, Semin. Thromb. Hemostas. 24, 33–44.Google Scholar
  7. 7.
    Girardin, E., Grau, G.E., Dayer, J.-M., Roux-Lombard, P., Jr. Study Group, and Lambert, P.H. (1988) Tumor Necrosis Factor and Interleukin-1 in the Serum of Children with Severe Infectious Purpura, N. Engl. J. Med. 319, 397–400.PubMedCrossRefGoogle Scholar
  8. 8.
    Hatherill, M., Tibby, S.M., Turner, C., Ratnavel, N., and Murdoch, I.A. (2000) Procalcitonin and Cytokine Levels: Relationship to Organ Failure and Mortality in Pediatric Septic Shock, Crit. Care Med. 28, 2591–2594.PubMedCrossRefGoogle Scholar
  9. 9.
    Arnalich, F., Garcia-Palomero, E., Lopez, J., Jimenez, M., Madero, R., Renart, J., Vazquez, J.J., and Montiel, C. (2000) Predictive Value of Nuclear Factor κB Activity and Plasma Cytokine Levels in Patients with Sepsis, Infect. Immun. 68, 1942–1945.PubMedCrossRefGoogle Scholar
  10. 10.
    Beutler, B., Milsark, I.W., and Cerami, A.C. (1985) Passive Immunization Against Cachectin/Tumor Necrosis Factor Protects Mice from Lethal Effect of Endotoxin, Science 229, 869–871.PubMedCrossRefGoogle Scholar
  11. 11.
    Tracey, K.J., Fong, Y., Hesse, D.G., Manogue, K.R., Lee, A.T., Kuo, G.C., Lowry, S.F., and Cerami, A.C. (1987) Anti-Cachectin/TNF Monoclonal Antibodies Prevent Septic Shock During Lethal Bacteraemia, Nature 330, 662–664.PubMedCrossRefGoogle Scholar
  12. 12.
    Alexander, H.R., Doherty, G.M., Buresh, C.M., Venzon, D.J., and Norton, J.A. (1991) A Recombinant Human Receptor Antagonist to Interkeukin 1 Improves Survival After Lethal Endotoxemia in Mice, J. Exp. Med. 173, 1029–1032.PubMedCrossRefGoogle Scholar
  13. 13.
    Marchant, A., Bruyns, C., Vandenabeele, P., Ducarme, M., Gerard, C., Delvaux, A., De Groote, D., Abramowicz, D., Velu, T., and Goldman, M. (1994) Interleukin-10 Controls Interferon-Gamma and Tumor Necrosis Factor Production During Experimental Endotoxemia, Eur. J. Immunol. 24, 1167–1171.PubMedGoogle Scholar
  14. 14.
    Pfeffer, K., Matsuyama, T., Kundig, T.M., Wakeham, A., Kishihara, K., Shahinlan, A., Wiegmann, K., Ohashi, P.S., Kronke, M., and Mak, T.W. (1993) Mice Deficient for the 55 Kd Tumor Necrosis Factor Receptor are Resistant to Endotoxic Shock, Yet Succumb to L. monocytogenes Infection, Cell 73, 457–467.PubMedCrossRefGoogle Scholar
  15. 15.
    Debets, J.M.H., Kampmeijer, R., van der Linden, M.P.M.H., Buurman, W.A., and van der Linden, C.J. (1989) Plasma Tumor Necrosis Factor and Mortality in Critically Ill Septic Patients, Crit. Care Med. 17, 489–494.PubMedCrossRefGoogle Scholar
  16. 16.
    Rogy, M.A., Coyle, S.M., Oldenburg, H.S., Rock, C.S., Barie, P.S., Van Zee, K.J., Smith, C.G., Moldawer, L.L., and Lowry, S.F. (1994) Persistently Elevated Soluble Tumor Necrosis Factor Receptor and Interleukin-1 Receptor Antagonist Levels in Critically Ill Patients, J. Am. Coll. Surg. 178, 132–138.PubMedGoogle Scholar
  17. 17.
    Pruitt, J.H., Welborn, M.B., Edwards, P.D., Harward, T.R., Seeger, J.W., Martin, T.D., Smith, C., Kenney, J.A., Wesdrop, R.I., Meijer, S., Cuesta, M.A., Abouhanze, A., Copeland, E.M. 3rd, Giri, J., Sims, J.E., Moldawer, L.L., and Oldenburg, H.S. (1996) Increased Soluble Interleukin-1 Type II Receptor Concentrations in Postoperative Patients and in Patients with Sepsis Syndrome, Blood 87, 3282–3288.PubMedGoogle Scholar
  18. 18.
    Oberholzer, A., Oberholzer, C., and Moldawer, L.L. (2000) Cytokine Signalling—Regulation of the Immune Response in Normal and Critically Ill States, Crit. Care Med. 28 (Suppl.), N3-N12.PubMedCrossRefGoogle Scholar
  19. 19.
    Eskandari, M.K., Bolgos, G., Miller, C., Nguyen, D.T., De-Forge, L.E., and Remick, D.G. (1992) Anti-Tumor Necrosis Factor Antibody Therapy Fails to Prevent Lethality After Cecal Ligation and Puncture or Endotoxemia, J. Immunol. 148, 2724–2730.PubMedGoogle Scholar
  20. 20.
    Opal, S.M., Cross, A.S., Jhung, J.W., Young, L.D., Palardy, J.E., Parejo, N.A., and Donsky, C. (1996) Potential Hazards of Combination Immunotherapy in the Treatment of Experimental Septic Shock, J. Infect. Dis. 173, 1415–1421.PubMedGoogle Scholar
  21. 21.
    Echtenacher, B., Weigl, K., Lehn, N., and Mannel, D.N. (2001) Tumor Necrosis Factor-Dependent Adhesions as a Major Protective Mechanism Early in Septic Peritonitis in Mice, Infect. Immun. 69, 3550–3555.PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher, C.J., Jr., Agosti, J.M., Opal, S.M., Lowry, S.F., Balk, R.A., Sadoff, J.C., Abraham, E., Schein, R.M., and Benjamin, E. (1996) Treatment of Septic Shock with the Tumor Necrosis Factor Receptor:Fc Fusion Protein, N. Engl. J. Med. 334, 1697–1702.PubMedCrossRefGoogle Scholar
  23. 23.
    Howell, W.M., Calder, P.C., and Grimble, R.F. (2002) Gene Polymorphisms, Inflammatory Diseases and Cancer, Proc. Nutr. Soc. 61, 447–456.PubMedCrossRefGoogle Scholar
  24. 24.
    Louis, E., Franchimont, D., Piron, A., Gevaert, Y., Schaaf-Lafontaine, N., Roland, S., Mahieu, P., Malaise, M., De Groote, D., Louis, R., and Belaiche, J. (1998) Tumour Necrosis Factor (TNF) Gene Polymorphism Influences TNF-Alpha Production in Lipopolysaccharide (LPS)-Stimulated Whole Blood Cell Culture in Healthy Humans, Clin. Exp. Immunol. 113, 401–406.PubMedCrossRefGoogle Scholar
  25. 25.
    Pociot, F., Briant, L., Jongeneel, C.V., Molvig, J., Worsaae, H., Abbal, M., Thomsen, M., Nerup, J., and Cambon-Thomsen, A. (1993) Association of Tumor Necrosis Factor (TNF) and Class II Major Histocompatibility Complex Alleles with the Secretion of TNF-Alpha and TNF-Beta by Human Mononuclear Cells: A Possible Link to Insulin-Dependent Diabetes Mellitus, Eur. J. Immunol. 23, 224–231.PubMedGoogle Scholar
  26. 26.
    Mira, J.P., Cariou, A., Grall, F., Delclaux, C., Losser, M.-R., Heshmati, F., Cheval, C., Monchi, M., Teboul, J.-L., Riche, F., Leleu, G., Arbibe, L., Mignon, A., Delpech, M., and Dhainaut, J.-F. (1999) Association of TNF2, a TNF-α Promoter Polymorphism, with Septic Shock Susceptibility and Mortality, J. Am. Med. Assoc. 282, 561–568.CrossRefGoogle Scholar
  27. 27.
    Stuber, F., Peterson, M., Bokelmann, F., and Schade, U. (1996) A Genetic Polymorphism Within the Tumor Necrosis Factor Locus Influences Plasma Tumor Necrosis Factor-α Concentrations and Outcome of Patients with Severe Sepsis, Crit. Care Med. 24, 381–384.PubMedCrossRefGoogle Scholar
  28. 28.
    Kahlke, V., Schafmayer, C., Schniewind, B., Seegert, D., Schreiber, S., and Schroder, J. (2004) Are Postoperative Complications Genetically Determined by TNF-β NcoI Gene Polymprophism?, Surgery 135, 365–373.PubMedCrossRefGoogle Scholar
  29. 29.
    Grbic, J.T., Mannick, J.A., Gough, D.B., and Rodrick, M.L. (1991) The Role of Prostaglandin E2 in Immune Suppression Following Injury, Ann. Surg. 214, 253–263.PubMedGoogle Scholar
  30. 30.
    Ertel, W., Morrison, M.H., Meldrum, D.R., Ayala, A., and Chaudry, I.H. (1992) Ibuprofen Restores Cellular Immunity and Decreases Susceptibility to Sepsis Following Hemorrhage, J. Surg. Res. 53, 55–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Kollef, M.H., and Schuster, D.P. (1995) The Acute Respiratory Distress Syndrome, N. Engl. J. Med. 332, 27–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Meakins, J.L., Pietsch, J.B., Bubenick, O., Kelly, R., Rode, H., Gordon, J., and MacLean, L.D. (1977) Delayed Hypersensitivity: Indicator of Acquired Failure of Host Defenses in Sepsis and Trauma, Ann. Surg. 186, 241–250.PubMedCrossRefGoogle Scholar
  33. 33.
    Lederer, J.A., Rodrick, M.L., and Mannick, J.A. (1999) The Effects of Injury on the Adaptive Immune Response, Shock 11, 153–159.PubMedCrossRefGoogle Scholar
  34. 34.
    Oberholzer, A., Oberholzer, C., and Moldawer, L.L. (2001) Sepsis Syndromes: Understanding the Role of Innate and Acquired Immunity, Shock 16, 83–96.PubMedGoogle Scholar
  35. 35.
    O'Sullivan, S.T., Lederer, J.A., Horgan, A.F., Chin, D.H.L., Mannick, J.A., and Rodrick, M.L. (1995) Major Injury Leads to Predominance of the T Helper-2 Lymphocyte Phenotype and Diminished Interleukin-12 Production Associated with Decreased Resistance to Infection, Ann. Surg. 222, 482–492.PubMedGoogle Scholar
  36. 36.
    Opal, S.M., and DePalo, V.A. (2000) Anti-Inflammatory Cytokines, Chest 117, 1162–1172.PubMedCrossRefGoogle Scholar
  37. 37.
    Gerard, C., Bruyns, C., Marchant, A., Abramowicz, D., Vandenabeele, P., Delvaux, A., Fiers, W., Goldman, M., and Velu, T. (1993) Interleukin 10 Reduces the Release of Tumor Necrosis Factor and Prevents Lethality in Experimental Endotoxemia, J. Exp. Med. 177, 547–550.PubMedCrossRefGoogle Scholar
  38. 38.
    Howard, M., Muchamuel, T., Andrade, S., and Menon, S. (1993) Interleukin 10 Protects Mice from Lethal Endotoxemia, J. Exp. Med. 177, 1205–1208.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith, S.R., Terminelli, C., Kenworthy-Bott, L., Calzetta, A., and Donkin, J. (1994) The Cooperative Effects of TNF-α and IFN-γ are Determining Factors in the Ability of IL-10 to Protect Mice from Lethal Endotoxemia, J. Leuk. Biol. 55, 711–718.Google Scholar
  40. 40.
    Hershman, M., Cheadle, W., Wellhausen, S., Davidson, P., and Polk, H. (1990) Monocyte HLA-DR Antigen Expression Characterises Clinical Outcome in the Trauma Patients, Br. J. Surg. 77, 204–207.PubMedGoogle Scholar
  41. 41.
    Wakefield, C., Carey, P., Fould, S., Monson, J., and Guillou, P. (1993) Changes in Major Histocompatibility Complex Class II Expression in Monocytes and T Cells of Patients Developing Infection After Surgery, Br. J. Surg. 80, 205–209.PubMedGoogle Scholar
  42. 42.
    Astiz, M., Saha, D., Lustbader, D., Lin, R., and Rackow, E. (1996) Monocyte Response to Bacterial Toxins, Expression of Cell Surface Receptors, and Release of Anti-Inflammatory Cytokines During Sepsis, J. Lab. Clin. Med. 128, 594–600.PubMedCrossRefGoogle Scholar
  43. 43.
    Manjuck, J., Saha, D.C., Astiz, M., Eales, L.-J., and Rackow, E.C. (2000) Decreased Response to Recall Antigens is Associated with Depressed Costimulatory Receptor Expression in Septic Critically Ill Patients, J. Lab. Clin. Med. 135, 153–1260.PubMedCrossRefGoogle Scholar
  44. 44.
    Munoz, C., Carlet, J., Fitting, C., Missett, B., Bieriot, J., and Cavaillon, J. (1991) Dysregulation of in vitro Cytokine Production by Monocytes During Sepsis, J. Clin. Invest. 88, 1747–1754.PubMedGoogle Scholar
  45. 45.
    Brandtzaeg, P., Osnes, L., Ovstebo, R., Joo, G., Westvik, A., and Kierulf, P. (1996) Net Inflammatory Capacity of Human Septic Shock Plasma Evaluated by a Monocyte-Based Target Cell Assay: Identification of Interleukin-10 as a Major Functional Deactivator of Human Monocytes, J. Exp. Med. 184, 51–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Heidecke, C.D., Hensler, T., Weighardt, H., Zantl, N., Wagner, H., Siewert, J.R., and Holzmann, B. (1999) Selective Defects of T Lymphocyte Function in Patients with Lethal Intraabdominal Infection, Am. J. Surg. 178, 288–292.PubMedCrossRefGoogle Scholar
  47. 47.
    Pellegrini, J.D., De, A.K.K., Puyana, J.C., Furse, R.K., and Miller-Graziano, C. (2000) Relationships Between T Lymphocyte Apoptosis and Anergy Following Trauma, J. Surg. Res. 88, 200–206.PubMedCrossRefGoogle Scholar
  48. 48.
    Weighardt, H., Heidecke, C.D., Emmanuilidis, K., Maier, S., Bartels, H., Siewert, J.R., and Holzmann, B. (2000) Sepsis After Major Visceral Surgery is Associated with Sustained and Interferon-γ-Resistant Defects of Monocyte Cytokine Production, Surgery 127, 309–315.PubMedCrossRefGoogle Scholar
  49. 49.
    Tschaikowsky, K., Hedwig-Geissing, M., Schiele, A., Bremer, F., Schywalsky, M., and Schutter, J. (2000) Coincidence of Proand Anti-Inflammatory Responses in the Early Phase of Severe Sepsis: Longitudinal Study of Mononuclear Histocompatibility Leukocyte Antigen-DR Expression, Procalcitonin, C-Reactive Protein, and Changes in T-Cell Subsets in Septic and Postoperative Patients, Crit. Care Med. 30, 1015–1023.Google Scholar
  50. 50.
    Calder, P.C. (2001) n−3 Polyunsaturated FA, Inflammation and Immunity: Pouring Oil on Troubled Waters or Another Fishy Tale?, Nutr. Res. 21, 309–341.CrossRefGoogle Scholar
  51. 51.
    Kinsella, J.E., Lokesh, B., Broughton, S., and Whelan, J. (1990) Dietary Polyunsaturated Fatty Acids and Eicosanoids: Potential Effects on the Modulation of Inflammatory and Immune Cells: An Overview, Nutrition 6, 24–44.PubMedGoogle Scholar
  52. 52.
    Calder, P.C. (2001) Polyunsaturated Fatty Acids, Inflammation and Immunity, Lipids 36, 1007–1024.PubMedGoogle Scholar
  53. 53.
    Calder, P.C. (2002) Dietary Modification of Inflammation with Lipids, Proc. Nutr. Soc. 61, 345–358.PubMedCrossRefGoogle Scholar
  54. 54.
    Calder, P.C. (2003) n−3 Polyunsaturated Fatty Acids and Inflammation: From Molecular Biology to the Clinic, Lipids 38, 342–352.Google Scholar
  55. 55.
    Miles, E.A., Allen, E., and Calder, P.C. (2002) In vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on Production of Monocyte-Derived Cytokines in Human Whole Blood Cultures, Cytokine 20, 215–223.PubMedCrossRefGoogle Scholar
  56. 56.
    Dooper, M.M.B.W., Wassink, L., M'Rabet, L., and Graus, Y.M.F. (2002) The Modulatory Effects of Prostaglandin-E on Cytokine Production by Human Peripheral Blood Mononuclear Cells are Independent of the Prostaglandin Subtype, Immunology 107, 152–159.PubMedCrossRefGoogle Scholar
  57. 57.
    Vassiliou, E., Jing, H., and Ganea, D. (2003) Prostaglandin E2 Inhibits TNF Production in Murine Bone Marrow-Derived Dendritic Cells, Cell. Immunol. 223, 120–132.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Pouw Kraan, T.C., Boeije, L.C., Smeenk, R.J., Wijdenes, J., and Aarden, L.A. (1995) Prostaglandin E2 is a Potent Inhibitor of Human Interleukin 12 Production in Murine Bone Marrow-Derived Dendritic Cells, J. Exp. Med. 181, 775–779.PubMedCrossRefGoogle Scholar
  59. 59.
    Rola-Pleszczynski, M., Thivierge, M., Gagnon, N., Lacasse, C., and Stankova, J. (1993) Differential Regulation of Cytokine and Cytokine Receptor Genes by PAF, LTB4 and PGE2, J. Lipid Mediat. 6, 175–181.PubMedGoogle Scholar
  60. 60.
    Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J.A., and Reddy, S.T. (2003) Differential Effects of Prostaglandin Derived From ω-6 and ω-3 Polyunsaturated Fatty Acids on COX-2 Expression and IL-6 Secretion, Proc. Natl. Acad. Sci. USA 100, 1751–1756.PubMedCrossRefGoogle Scholar
  61. 61.
    Levy, B.D., Clish, C.B., Schmidt, B., Gronert, K., and Serhan, C.N. (2001) Lipid Mediator Class Switching During Acute Inflammation: Signals in Resolution, Nature Immunol. 2, 612–619.CrossRefGoogle Scholar
  62. 62.
    Vachier, I., Chanez, P., Bonnans, C., Godard, P., Bousquet, J., and Chavis, C. (2002) Endogenous Anti-Inflammatory Mediators from Arachidonate in Human Neutrophils, Biochem. Biophys. Res. Commun. 290, 219–224.PubMedCrossRefGoogle Scholar
  63. 63.
    Gewirtz, A.T., Collier-Hyams, L.S., Young, A.N., Kucharzik, T., Guilford, W.J., Parkinson, J.F., Williams, I.R., Neish, A.S., and Madara, J.L. (2002) Lipoxin A4 Analogs Attenuate Induction of Intestinal Epithelial Proinflammatory Gene Expression and Reduce the Severity of Dextran Sodium Sulfate-Induced Colitis, J. Immunol. 168, 5260–5267.PubMedGoogle Scholar
  64. 64.
    Serhan, C.N., Jain, A., Marleau, S., Clish, C., Kantarci, A., Beh-behani, B., Colgan, S.P., Stahl, G.L., Merched, A., Petasis, N.A., Chan, L., and Van Dyke, T.E. (2003) Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-Inflammatory Lipid Mediators, J. Immunol. 171, 6856–6865.PubMedGoogle Scholar
  65. 65.
    Calder, P.C., Bevan, S.J., and Newsholme, E.A. (1992) The Inhibition of T-Lymphocyte Proliferation by Fatty Acids is Via an Eicosanoid-Independent Mechanism, Immunology 75, 108–115.PubMedGoogle Scholar
  66. 66.
    Miles, E.A., Aston, L., and Calder, P.C. (2003) In Vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on T Helper Type 1 and T Helper Type 2 Cytokine Production in Human Whole-Blood Cultures, Clin. Exp. Allergy 33, 624–632.PubMedCrossRefGoogle Scholar
  67. 67.
    Camandola, S., Leonarduzzi, G., Musso, T., Varesio, L., Carini, R., Scavazza, A., Chiarpotto, E., Baeuerle, P.A., and Poli, G. (1996) Nuclear κB is Activated by Arachidonic Acid but Not by Eicosapentaenoic Acid, Biochem. Biophys. Res. Commun. 229, 643–647.PubMedCrossRefGoogle Scholar
  68. 68.
    Priante, G., Bordin, L., Musacchio, E., Clari, G., and Baggio, B. (2002) Fatty Acids and Cytokine mRNA Expression in Human Osteoblastic Cells: A Specific Effect of Arachidonic Acid, Clin. Sci. 102, 403–409.PubMedCrossRefGoogle Scholar
  69. 69.
    Bordin, L., Prianti, G., Musacchio, E., Giunco, S., Tibaldi, E., Clari, G., and Baggio, B. (2003) Arachidonic Acid-Induced IL-6 Expression is Mediated by PKC-α Activation in Osteoblastic Cells, Biochemistry 42, 4485–4491.PubMedCrossRefGoogle Scholar
  70. 70.
    Hennig, B., Toborek, M., Joshi-Barve, S., Barger, S.W., Barve, S., Mattson, M.P., and McClain, C.J. (1996) Linoleic Acid Activates Nuclear Transcription Factor-Kappa B (NF-kappa B) and Induces NF-kappa B-Dependent Transcription in Cultured Endothelial Cells, Am. J. Clin. Nutr. 63, 322–328.PubMedGoogle Scholar
  71. 71.
    Hennig, B., Meerarani, P., Ramadass, P., Watkins, B.A., and Toborek, M. (2000) Fatty Acid-Induced Activation of Vascular Endothelial Cells, Metabolism 49, 1006–1013.PubMedCrossRefGoogle Scholar
  72. 72.
    Toborek, M., Blanc, E.M., Kaiser, S., Mattson, M.P., and Hennig, B. (1997) Linoleic Acid Potentiates TNF-Mediated Oxidative Stress, Disruption of Calcium Homeostasis, and Apoptosis of Cultured Vascular Endothelial Cells, J. Lipid Res. 38, 2155–2167.PubMedGoogle Scholar
  73. 73.
    Toborek, M., Lee, Y.W., Garrido, R.S., and Hennig, B. (2002) Unsaturated Fatty Acids Selectively Induce an, Inflammatory Environment in Human Endothelial Cells, Am. J. Clin. Nutr. 75, 119–125.PubMedGoogle Scholar
  74. 74.
    Young, V.M., Toborek, M., Yang, F.J., McClain, C.J., and Hennig, B. (1998) Effect of Linoleic Acid on Endothelial Cell Inflammatory Mediators, Metabolism 47, 566–572.PubMedCrossRefGoogle Scholar
  75. 75.
    Park, H.J., Lee, Y.W., Hennig, B., and Toborek, M. (2001) Linoleic Acid-Induced VCAM-1 Expression in Human Microvascular Endothelial Cells is Mediated by NF-kappa B-Dependent Pathway, Nutr. Cancer 41, 126–134.PubMedCrossRefGoogle Scholar
  76. 76.
    Dichtl, W., Ares, M.P.S., Niemann Jonson, A., Jovinge, S., Pachinger, O., Giachelli, C.M., Hamsten, A., Eriksson, P., and Nilsson, J. (2002) Linoleic Acid-Stimulated Vascular Adhesion Molecule-1 Expression in Endothelial Cells Depends on Nuclear Factor-κB Activation, Metabolism 51, 327–333.PubMedCrossRefGoogle Scholar
  77. 77.
    Gibney, M.J., and Hunter, B. (1993) The Effects of Short- and Long-Term Supplementation with Fish Oil on the Incorporation of n−3 Polyunsaturated Fatty Acids into Cells of the Immune System in Healthy Volunteers, Eur. J. Clin. Nutr. 47, 255–259.PubMedGoogle Scholar
  78. 78.
    Yaqoob, P., Pala, H.S., Cortina-Borja, M., Newsholme, E.A., and Calder, P.C. (2000) Encapsulated Fish Oil Enriched in α-Tocopherol Alters Plasma Phospholipid and Mononuclear Cell Fatty Acid Compositions but not Mononuclear Cell Functions, Eur. J. Clin. Invest. 30, 260–274.PubMedCrossRefGoogle Scholar
  79. 79.
    Healy, D.A., Wallace, F.A., Miles, E.A., Calder, P.C., and Newsholme, P. (2000) The Effect of Low to Moderate Amounts of Dietary Fish Oil on Neutrophil Lipid Composition and Function, Lipids 35, 763–768.PubMedGoogle Scholar
  80. 80.
    Endres, S., Ghorbani, R., Kelley, V.E., Georgilis, K., Lonnemann, G., van der Meer, J.M.W., Cannon, J.G., Rogers, T.S., Klempner, M.S., Weber, P.C., Schaeffer, E.J., Wolff, S.M., and Dinarello, C.A. (1989) The Effect of Dietary Supplementation with n−3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin-1 and Tumor Necrosis Factor by Mononuclear Cells, N. Eng. J. Med. 320, 265–271.CrossRefGoogle Scholar
  81. 81.
    Meydani, S.N., Endres, S., Woods, M.M., Goldin, B.R., Soo, C., Morrill-Labrode, A., Dinarello, C., and Gorbach, S.L. (1991) Oral (n−3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison Between Young and Older Women, J. Nutr. 121, 547–555.PubMedGoogle Scholar
  82. 82.
    Caughey, G.E., Mantzioris, E., Gibson, R.A., Cleland, L.G., and James, M.J. (1996) The Effect on Human Tumor Necrosis Factor a and Interleukin 1β Production of Diets Enriched in n−3 Fatty Acids from Vegetable Oil or Fish Oil, Am. J. Clin. Nutr. 63, 116–122.PubMedGoogle Scholar
  83. 83.
    Trebble, T.M., Wootton, S.A., Miles, E.A., Mullee, M., Arden, N.K., Ballinger, A.B., Stroud, M.A., and Calder, P.C. (2003) Prostaglandin E2 Production and T-Cell Function After Fish-Oil Supplementation: Response to Antioxidant Co-supplementation, Am. J. Clin. Nutr. 78, 376–382.PubMedGoogle Scholar
  84. 84.
    Lee, T.H., Hoover, R.L., Williams, J.D., Sperling, R.I., Ravalese, J., Spur, B.W., Robinson, D.R., Corey, E.J., Lewis, R.A., and Austen, K.F. (1985) Effects of Dietary Enrichment with Eicosapentaenoic Acid and Docosahexaenoic Acid on In Vitro Neutrophil and Monocyte Leukotriene Generation and Neutrophil Function, N. Eng. J. Med. 312, 1217–1224.CrossRefGoogle Scholar
  85. 85.
    Sperling, R.I., Benincaso, A.I., Knoell, C.T., Larkin, J.K., Austen, K.F., and Robinson, D.R. (1993) Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Phosphoinositide Formation and Chemotaxis in Neutrophils, J. Clin. Invest. 91, 651–660.PubMedCrossRefGoogle Scholar
  86. 86.
    Von Schacky, C., Kiefl, R., Jendraschak, E., and Kaminski, W.E. (1993) n−3 Fatty Acids and Cysteinyl-Leukotriene Formation in Humans in vitro, ex vivo and in vivo, J. Lab. Clin. Med. 121, 302–309.Google Scholar
  87. 87.
    Needleman, P., Whitaker, M.O., Wyche, A., Watters, K., Sprecher, H., and Raz, A. (1980) Manipulation of Platelet Aggregation by Prostaglandins and Their Fatty Acid Precursors: Pharmacological Basis for a Therapeutic Approach, Prostaglandins 19, 165–181.PubMedCrossRefGoogle Scholar
  88. 88.
    Kulmacz, R.J., Pendleton, R.B., and Lands, W.E.M. (1994) Interaction Between Peroxidase and Cyclooxygenase Activities in Prostaglandin-Endoperoxide Synthase, J. Biol. Chem. 269, 5527–5536.PubMedGoogle Scholar
  89. 89.
    Obata, T., Nagakura, T., Masaki, T., Maekawa, K., and Yamashita, K. (1999) Eicosapentaenoic Acid Inhibits Prostaglandin D2 Generation by Inhibiting Cyclo-oxygenase-2 in Cultured Human Mast Cells, Clin. Exp. Allergy 29, 1129–1135.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee, T.H., Mencia-Huerta, J.M., Shih, C., Corey, E.J., Lewis, R.A., and Austen, F.A. (1984) Effects of Exogenous Arachidonic Eicosapentaenoic, and Docosahexaenoic Acids on the Generation of 5-Lipoxygenase Pathway Products by Ionophore-Activated Human Neutrophils, J. Clin. Invest. 74, 1922–1933.PubMedGoogle Scholar
  91. 91.
    Rao, G.H., Radha, E., and White, J.G. (1983) Effect of Docosahexaenoic Acid (DHA) on Arachidonic Acid Metabolism and Platelet Function, Biochem. Biophys. Res. Commun. 16, 549–55.CrossRefGoogle Scholar
  92. 92.
    Corey, E.J., Shih, C., and Cashman, J.R. (1983) Docosahexaenoic Acid is a Strong Inhibitor of Prostaglandin but Not Leukotriene Biosynthesis, Proc. Natl. Acad. Sci. USA 80, 3581–3584.PubMedCrossRefGoogle Scholar
  93. 93.
    Curtis, C.L., Hughes, C.E., Flannery, C.R., Little, C.B., Harwood, J.L., and Caterson, B. (2000) n−3 Fatty Acids Specifically Modulate Catabolic Factors Involved in Articular Cartilage Degradation, J. Biol. Chem. 275, 721–724.PubMedCrossRefGoogle Scholar
  94. 94.
    Curtis, C.L., Rees, S.G., Little, C.B., Flannery, C.R., Hughes, C.E., Wilson, C., Dent, C.M., Otterness, I.G., Harwood, J.L., and Caterson, B. (2002) Pathologic Indicators of Degradation and Inflammation in Human Osteoarthritic Cartilage are Abrogated by Exposure to n−3 Fatty Acids, Arthritis Rheum. 46, 1544–1553.PubMedCrossRefGoogle Scholar
  95. 95.
    Laneuville, O., Breuer, D.K., Xu, N., Huang, Z.H., Gage, D.A., Watson, J.T., Lagarde, M., DeWitt, D.L., and Smith, W.L. (1995) Fatty Acid Substrate Specificities of Human Prostaglandin-Endoperoxide H Synthase-1 and-2, J. Biol. Chem. 270, 19330–19336.PubMedCrossRefGoogle Scholar
  96. 96.
    Malkowski, M.G., Thuresson, E.D., Lakkides, K.M., Rieke, C.J., Micielli, R., Smith, W.L., and Garavito, R.M. (2001) Structure of Eicosapentaenoic and Linoleic Acids in the Cyclooxygenase Site of Prostaglandin Endoperoxidase H Synthase-1, J. Biol. Chem. 276, 37547–37555.PubMedCrossRefGoogle Scholar
  97. 97.
    Hawkes, J.S., James, M.J., and Cleland, L.G. (1991) Separation and Quantification of PGE3 Following Derivatization with Panacyl Bromide by High Pressure Liquid Chromatography with Fluorometric Detection, Prostaglandins 42, 355–368.PubMedCrossRefGoogle Scholar
  98. 98.
    Goldman, D.W., Pickett, W.C., and Goetzl, E.J. (1983) Human Neutrophil Chemotactic and Degranulating Activities of Leukotriene B5 (LTB5) Derived from Eicosapentaenoic Acid, Biochem. Biophys. Res. Commun. 117, 282–288.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee, T.H., Mencia-Huerta, J.M., Shih, C., Corey, E.J., Lewis, R.A., and Austen, K.F. (1984) Characterization and Biologic Properties of 5,12-Dihydroxy Derivatives of Eicosapentaenoic Acid, Including Leukotriene-B5 and the Double Lipoxygenase Product, J. Biol. Chem. 259, 2383–2389.PubMedGoogle Scholar
  100. 100.
    Grimminger, F., Mayer, K., Kiss, L., Wahn, H., Walmrath, D., Bahkdi, S., and Seeger, W. (1997) Synthesis of 4-Series and 5-Series Leukotrienes in the Lung Microvasculature Challenged with Escherichia coli Hemolysin: Critical Dependence on Exogenous Free Fatty Acid Supply, Am. J. Resp. Cell. Mol. Biol. 16, 317–324.Google Scholar
  101. 101.
    Grimminger, F., Wahn, H., Mayer, K., Kiss, L., Walmrath, D., and Seeger, W. (1997) Impact of Arachidonic Acid Versus Eicosapentaenoic Acid on Exotoxin-Induced Lung Vascular Leakage—Relation to 4-Series Versus 5-Series Leukotriene Generation, Am. J. Resp. Crit. Care Med. 155, 513–519.PubMedGoogle Scholar
  102. 102.
    Breil, I., Koch, T., Heller, A., Schlotzer, E., Grunert, A., van Ackern, K., and Neuhof, H. (1996) Alteration of n−3 Fatty Acid Composition in Lung Tissue After Short-Term Infusion of Fish Oil Emulsion Attenuates Inflammatory Vascular Reaction, Crit. Care Med. 24, 1893–1902.PubMedCrossRefGoogle Scholar
  103. 103.
    Serhan, C.N., Clish, C.B., Brannon, J., Colgan, S.P., Gronert, K., and Chiang, N. (2000) Anti-Inflammatory Lipid Signals Generated From Dietary n−3 Fatty Acids via Cyclooxygenase-2 and Transcellular Processing: A Novel Mechanism for NSAID and n−3 PUFA Therapeutic Actions, J. Physiol. Pharmacol. 4, 643–654.Google Scholar
  104. 104.
    Serhan, C.N., Clish, C.B., Brannon, J., Colgan, S.P., Chiang, N., and Gronert, K. (2000) Novel Functional Sets of Lipid-derived Mediators with Anti-inflammatory Actions Generated From Omega-3 Fatty Acids Via Cyclooxygenase 2-Nonsteroidal Antiinflammatory Drugs and Transcellular Processing, J. Exp. Med. 192, 1197–1204.PubMedCrossRefGoogle Scholar
  105. 105.
    Serhan, C.N., Hong, S., Gronert, K., Colgan, S.P., Devchand, P.R., Mirick, G., and Moussignac, R-L. (2002) Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment That Counter Pro-Inflammation Signals, J. Exp. Med. 196, 1025–1037.PubMedCrossRefGoogle Scholar
  106. 106.
    Hong, S., Gronert, K., Devchand, P., Moussignac, R.-L., and Serhan, C.N. (2003) Novel Docosatrienes and 17S-Resolvins Generated from Docosahexaenoic Acid in Urine Brain, Human Blood and Glial Cells: Autocoids in Anti-inflammation, J. Biol. Chem. 278, 14677–14687.PubMedCrossRefGoogle Scholar
  107. 107.
    Marcheselli, V.L., Hong, S., Lukiw, W.J., Hua Tian, X., Gronert, K., Musto, A., Hardy, M., Gimenez, J.M., Chiang, N., Serhan, C.N., and Bazan, N.G. (2003) Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-Mediated Leukocyte Infiltration and Pro-Inflammatory Gene Expression, J. Biol. Chem. 278, 43807–43817.PubMedCrossRefGoogle Scholar
  108. 108.
    Mukherjee, P.K., Marcheselli, V.L., Serhan, C.N., and Bazan, N.G. (2004) Neutroprotectin D1: A Docosahexaenoic Acid-Derived Docosatriene Protects Human Retinal Pigment Epithelial Cells from Oxidative Stress, Proc. Natl. Acad. Sci. USA 101, 8491–8496.PubMedCrossRefGoogle Scholar
  109. 109.
    De Caterina, R., Cybulsky, M.I., Clinton, S.K., Gimbrone, M.A., and Libby, P. (1994) The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells, Arterioscler. Thromb. 14, 1829–1836.PubMedGoogle Scholar
  110. 110.
    Khalfoun, B., Thibault, F., Watier, H., Bardos, P., and Lebranchu, Y. (1997) Docosahexaenoic and Eicosapentaenoic Acids Inhibits in vitro Human Endothelial Cell Production of Interleukin-6, Adv. Exp. Biol. Med. 400, 589–597.Google Scholar
  111. 111.
    Lo, C.J., Chiu, K.C., Fu, M., Lo, R., and Helton, S. (1999) Fish Oil Decreases Macrophage Tumor Necrosis Factor Gene Transcription by Altering the NFκB Activity, J. Surg. Res. 82, 216–222.PubMedCrossRefGoogle Scholar
  112. 112.
    Babcock, T.A., Novak, T., Ong, E., Jho, D.H., Helton, W.S., and Espat, N.J. (2002) Modulation of Lipopolysaccharide-Stimulated Macrophage Tumor Necrosis Factor-α Production by ω-3 Fatty Acid Is Associated with Differential Cyclooxygenase-2 Protein Expression and is Independent of Interleukin-10, J. Surg. Res. 107, 135–139.PubMedGoogle Scholar
  113. 113.
    Novak, T.E., Babcock, T.A., Jho, D.H., Helton, W.S., and Espat, N.J. (2003) NF-κB Inhibition by ω-3 Fatty Acids Modulates LPS-Stimulated Macrophage TNF-α Transcription, Am. J. Physiol. 284, L84-L89.Google Scholar
  114. 114.
    Zhao, Y., Joshi-Barve, S., Barve, S., and Chen, L.H. (2004) Eicosapentaenoic Acid Prevents LPS-Induced TNF-α Expression by Preventing NF-κB Activation, J. Am. Coll. Nutr. 23, 71–78.PubMedGoogle Scholar
  115. 115.
    Ross, J.A., Moses, A.G.W., and Fearon, K.C.H. (1999) The Anti-catabolic Effects of n−3 Fatty Acids, Curr. Opin. Clin. Nutr. Metab. Care 2, 219–226.PubMedCrossRefGoogle Scholar
  116. 116.
    Lo, C.J., Chiu, K.C., Fu, M.J., Chu, A., and Helton, S. (2000) Fish Oil Modulates Macrophage P44/42 Mitogen-Activated Protein Kinase Activity Induced by Lipopolysaccharide, J. Parent. Ent. Nutr. 24, 159–163.Google Scholar
  117. 117.
    Xi, S., Cohen, D., Barve, S., and Cohen, L.H. (2001) Fish Oil Suppressed Cytokines and Nuclear Factor kappaB Induced by Murine AIDS Virus Infection, Nutr. Res. 21, 865–878.CrossRefGoogle Scholar
  118. 118.
    Sadeghi, S., Wallace, F.A., and Calder, P.C. (1999) Dietary Lipids Modify the Cytokine Response to Bacterial Lipopolysaccharide in Mice, Immunology 96, 404–410.PubMedCrossRefGoogle Scholar
  119. 119.
    Abbate, R., Gori, A.M., Martini, F., Brunelli, T., Filippini, M., Francalanci, I., Paniccia, R., Prisco, D., Gensini, G.F., and Serneri, G.G.N. (1996) n−3 PUFA Supplementation, Monocyte PCA Expression and Interleukin-6 Production, Prostaglandins Leukot. Essent. Fatty Acids 54, 439–444.PubMedCrossRefGoogle Scholar
  120. 120.
    Trebble, T., Arden, N.K., Stroud, M.A., Wootton, S.A., Burdge, G.C., Miles, E.A., Ballinger, A.B., Thompson, R.L., and Calder, P.C. (2003) Inhibition of Tumour Necrosis Factor-α and Inter-leukin-6 Production by Mononuclear Cells Following Dietary Fish-Oil Supplementation in Healthy Men and Response to Antioxidant Co-Supplementation, Br. J. Nutr. 90, 405–412.PubMedCrossRefGoogle Scholar
  121. 121.
    Wallace, F.A., Miles, E.A., and Calder, P.C. (2003) Comparison of the Effects of Linseed Oil and Different Doses of Fish Oil on Mononuclear Cell Function in Healthy Human Subjects, Br. J. Nutr. 89, 679–689.PubMedCrossRefGoogle Scholar
  122. 122.
    Grimble, R.F., Howell, W.M., O'Reilly, G., Turner, S.J., Markovic, O., Hirrell, S., East, J.M., and Calder, P.C. (2002) The Ability of Fish Oil to Suppress Tumor Necrosis Factor-α Production by Peripheral Blood Mononuclear Cells in Healthy Men is Associated with Polymorphisms in Genes that Influence Tumor Necrosis Factor α Production, Am. J. Clin. Nutr. 76, 454–459.PubMedGoogle Scholar
  123. 123.
    Mascioli, E.A., Leader, L., Flores, E., Trimbo, S., Bistrian, B., and Blackburn, G. (1988) Enhanced Survival to Endotoxin in Guinea Pigs Fed IV Fish Oil Emulsion, Lipids 23, 623–625.PubMedGoogle Scholar
  124. 124.
    Mascioli, E.A., Iwasa, Y., Trimbo, S., Leader, L., Bistrian, B.R., and Blackburn, G.L. (1989) Endotoxin Challenge After Menhaden Oil Diet: Effects on Survival of Guinea Pigs, Am. J. Clin. Nutr. 49, 277–282.PubMedGoogle Scholar
  125. 125.
    Utsunomiya, T., Chavali, S.R., Zhong, W.W., and Forse, R.A. (1994) Effects of Continuous Tube Feeding of Dietary Fat Emulsions on Eicosanoid Production and on Fatty Acid Composition During an Acute Septic Shock in Rats, Biochim. Biophys. Acta 1214, 333–339.PubMedGoogle Scholar
  126. 126.
    Sane, S., Baba, M., Kusano, C., Shirao, K., Andoh, T., Kamada, T., and Aikou, T. (2000) Eicosapentaenoic Acid Reduces Pulmonary Edema in Endotoxemic Rats, J. Surg. Res. 93, 21–27.PubMedCrossRefGoogle Scholar
  127. 127.
    Mulrooney, H.M., and Grimble, R.F. (1994) Influence of Butter and of Corn, Coconut and Fish Oils on the Effects of Recombinant Human Tumour Necrosis Factor-α in Rats, Clin. Sci. 84, 105–112.Google Scholar
  128. 128.
    Pomposelli, J., Mascioli, E.A., Bistrian, B.R., and Flores, S.M. (1990) Attenuation of the Febrile Response in Guinea Pigs by Fish Oil Enriched Diets, J. Parent. Ent. Nutr. 13, 136–140.Google Scholar
  129. 129.
    Pomposelli, J.J., Flores, E.A., Blackburn, G., Zeisel, S.H., and Bistrian, B.R. (1991) Diets Enriched with n−3 Fatty Acids Ameliorate Lactic Acidosis by Improving Endotoxin-Induced Tissue Hypoperfusion in Guinea Pigs, Ann. Surg. 213, 166–176.PubMedGoogle Scholar
  130. 130.
    Teo, T.C., Selleck, K.M., Wan, J.M.F., Pomposelli, J.J., Babayan, V.K., Blackburn, G.L., and Bistrian, B.R. (1991) Long-Term Feeding with Structured Lipid Composed of Medium-Chain and n−3 Fatty Acids Ameliorates Endotoxic Shock in Guinea-Pigs, Metabolism 40, 1152–1159.PubMedCrossRefGoogle Scholar
  131. 131.
    Murray, M.J., Kanazi, G., Moukabary, K., Tazelaar, H.D., and DeMichele, S.J. (2000) Effects of Eicosapentaenoic and γ-Linolenic Acids (Dietary Lipids) on Pulmonary Surfactant Composition and Function During Porcine Endotoxemia, Chest 117, 1720–1727.PubMedCrossRefGoogle Scholar
  132. 132.
    Mancuso, P., Whelan, J., DeMichele, S.J., Snider, C.C., Guszcza, J.A., and Karlstad, M.D. (1997) Dietary Fish Oil and Fish and Borage Oil Suppress Intrapulmonary Proinflammatory Eicosanoids Biosynthesis and Attenuate Pulmonary Neutrophil Accumulation in Endotoxic Rats, Crit. Care Med. 25, 1198–1206.PubMedCrossRefGoogle Scholar
  133. 133.
    Mancuso, P., Whelan, J., DeMichele, S.J., Snider, C.C., Guszcza, J.A., Claycombe, K.J., Smith, G.T., Gregory, T.J., and Karlstad, M.D. (1997) Effects of Eicosapentaenoic and Gamma-Linolenic Acid on Lung Permeability and Alveolar Macrophage Eicosanoid Synthesis in Endotoxic Rats, Crit. Care Med. 25, 523–532.PubMedCrossRefGoogle Scholar
  134. 134.
    Murray, M.J., Svinger, B.A., Holman, R.T., and Yaksh, T.L. (1991) Effects of a Fish Oil Diet on Pig's Cardiopulmonary Response to Bacteremia, J. Parent. Ent. Nutr. 15, 152–158.Google Scholar
  135. 135.
    Murray, M.J., Svinger, B.A., Yaksh, T.L., and Holman, R.T. (1993) Effects of Endotoxin on Pigs Prefed Omega-3 Vs. Omega-6 Fatty Acids-Enriched Diets, Am. J. Physiol. 265, E920-E927.PubMedGoogle Scholar
  136. 136.
    Murray, M.J., Kumar, M., Gregory, T.J., Banks, P.L., Tazelaar, H.D., and DeMichele, S.J. (1995) Select Dietary Fatty Acids Attenuate Cardiopulmonary Dysfunction During Acute Lung Injury in Pigs, Am. J. Physiol. 269, H2090-H2097.PubMedGoogle Scholar
  137. 137.
    Calder, P.C., Yaqoob, P., Thies, F., Wallace, F.A., and Miles, E.A. (2002) Fatty Acids and Lymphocyte Functions, Br. J. Nutr. 87, S31-S48.PubMedCrossRefGoogle Scholar
  138. 138.
    Halvorsen, D.A., Hansen, J-B, Grimsgaard, S., Bonna, K.H., Kierulf, P., and Nordoy, A. (1997) The Effect of Highly Purified Eicosapentaenoic and Docosahexaenoic Acids on Monocyte Phagocytosis in Man, Lipids 32, 935–942.PubMedCrossRefGoogle Scholar
  139. 139.
    Thies, F., Miles, E.A., Nebe-von-Caron, G., Powell, J.R., Hurst, T.L., Newsholme, E.A., and Calder, P.C. (2001) Influence of Dietary Supplementation with Long-Chain n−3 or n−6 Polyunsaturated Fatty Acids on Blood Inflammatory Cell Populations and Functions and on Plasma Soluble Adhesion Molecules in Healthy Adults, Lipids 36, 1183–1193.PubMedCrossRefGoogle Scholar
  140. 140.
    Kew, S., Banerjee, T., Minihane, A.M., Finnegan, Y.E., Muggli, R., Albers, R., Williams, C.M., and Calder, P.C. (2003) Lack of Effect of Foods Enriched with Plant- or Marine-Derived n−3 Fatty Acids on Human Immune Function, Am. J. Clin. Nutr. 77, 1287–1295.PubMedGoogle Scholar
  141. 141.
    Miles, E.A., Banerjee, T., Dooper, M.W.B.W., M'Rabet, L., Graus, Y.M.F., and Calder, P.C. (2004) The Influence of Different Combinations of γ-Linolenic Acid, Stearidonic Acid and EPA on Immune Function in Healthy Young Male Subjects, Brit. J. Nutr. 91, 893–903.PubMedCrossRefGoogle Scholar
  142. 142.
    Hughes, D.A., Pinder, A.C., Piper, Z., Johnson, I.T., and Lund, E.K. (1996) Fish Oil Supplementation Inhibits the Expression of Major Histocompatibility Complex Class II Molecules and Adhesion Molecules on Human Monocytes, Am. J. Clin. Nutr. 63, 267–272.PubMedGoogle Scholar
  143. 143.
    Meydani, M., Natiello, F., Goldin, B., Free, N., Woods, M., Schaefer, E., Blumberg, J.B., and Gorbach, S.L. (1991) Effect of Long-Term Fish Oil Supplementation on Vitamin E Status and Lipid Peroxidation in Women, J. Nutr. 121, 484–491.PubMedGoogle Scholar
  144. 144.
    Molvig, J., Pociot, F., Worsaae, H., Wogensen, L.D., Baek, L., Christensen, P., Mandruppoulsen, T., Andersen, K., Madsen, P., Dyerberg, J., and Nerup, J. (1991) Dietary Supplementation with Omega 3 Polyunsaturated Fatty Acids Decreases Mononuclear Cell Proliferation and Interleukin 1 Beta Content but Not Monokine Secretion in Healthy and Insulin Dependent Diabetic Individuass, Scand. J. Immunol. 34, 399–410.PubMedCrossRefGoogle Scholar
  145. 145.
    Thies, F., Nebe-von-Caron, G., Powell, J.R., Yaqoob, P., Newsholme, E.A., and Calder, P.C. (2001) Dietary Supplementation with γ-Linolenic Acid or Fish Oil Decreases T Lymphocyte Proliferation in Healthy Older Humans, J. Nutr. 131, 1918–1927.PubMedGoogle Scholar
  146. 146.
    Pscheidl, E., Schywalsky, M., Schywalsky, M., Tschaikowsky, K., and Boke-Prols, T. (2000) Fish Oil-Supplemented Parenteral Diets Normalize Splanchnic Blood Flow and Improve Killing of Translocated Bacteria in a Low-Dose Endotoxin Rat Model, Crit. Care Med. 28, 1489–1496.PubMedCrossRefGoogle Scholar
  147. 147.
    Barton, R.G., Wells, C.L., Carlson, A., Singh, R., Sullivan, J.J., and Cerra, F.B. (1991) Dietary Omega-3 Fatty Acids Decrease Mortality and Kupffer Cell Prostaglandin E2 Production in a Rat Model of Chronic Sepsis, J. Trauma 31, 768–774.PubMedGoogle Scholar
  148. 148.
    Rayon, J.I., Carver, J.D., Wyble, L.E., Wiener, D., Dickey, S.S., Benford, V.J., Chen, L.T., and Lim, D.V. (1997) The Fatty Acid Composition of Maternal Diet Affects Lung Prostaglandin E2 Levels and Survival from Group B Streptococcal Sepsis in Neonatal Rat Pups, J. Nutr. 127, 1989–1992.PubMedGoogle Scholar
  149. 149.
    Lanza-Jacoby, S., Flynn, J.T., and Miller, S. (2001) Parenteral Supplementation with a Fish Oil Emulsion Prolong Survival and Improves Lymphocyte Function During Sepsis, Nutrition 17, 112–116.PubMedCrossRefGoogle Scholar
  150. 150.
    Johnson, J.A., Griswold, J.A., Muakkassa, F.F., Meyer, A.A., Maier, R.V., Chaudry, I.H., and Cerra, F. (1993) Essential Fatty Acids Influence Survival in Stress, J. Trauma 35, 128–131.PubMedGoogle Scholar
  151. 151.
    Blok, W.L., Vogels, M.T.E., Curfs, J.H.A.J., Eling, W.M.C., Buurmann, W.A., and van der Meer, J.M.W. (1992) Dietary Fish Oil Supplementation in Experimental Gram Negative Infection and in cerebral malaria in Mice, J. Infect. Dis. 165, 898–903.PubMedGoogle Scholar
  152. 152.
    Chang, H.R., Dulloo, A.G., Vladoianu, I.R., Piguet, P.F., Arsenijevic, D., Girardier, L., and Pechere, J.C. (1992) Fish Oil Decreases Natural Rresistance of Mice to Infection with Salmonella typhimurium, Metabolism 41, 1–2.PubMedCrossRefGoogle Scholar
  153. 153.
    Fritsche, K.L., Shahbazian, L.M., Feng, C., and Berg, J.N. (1997) Dietaey Fish Oil Reduces Survival and Impairs Bacterial Clearance in C3H/Hen Mice Challenged with Listeria monocytogenes, Clin. Sci. 92, 95–101.PubMedGoogle Scholar
  154. 154.
    Mayatepek, E., Paul, K., Leichsenring, M., Pfisterer, M., Wagener, D., Domann, M., Sonntag, H.G., and Brener, H.J. (1994) Influence of Dietary (n−3) Polyunsaturated Fatty Acids on Leukotriene B4 and Prostaglandin E2 Synthesis and the Time Course of Experimental Tuberculosis in Guinea Pigs, Infection 22, 106–112.PubMedCrossRefGoogle Scholar
  155. 155.
    D'Ambola, J.B., Aeberhard, E.E., Trang, N., Gaffar, S., Barrett, C.T., and Sherman, M.P. (1991) Effect of Dietary (n−3) and (n−6) Fatty Acids on in vivo Pulmonary Bacterial clearance by Neonatal Rabbits, J. Nutr. 121, 1262–1269.PubMedGoogle Scholar
  156. 156.
    Kronberg, D., Hansen, B., and Aaby, P. (1992) Analysis of the Incubation Period for Measles in the Epidemic in Greenland in 1951 Using a Variance Components Model, Stat. Med. 11, 579–590.Google Scholar
  157. 157.
    Heyland, D.K., MacDonald, S., Keefe, L., and Drover, J.W. (1998) Total Parenteral Nutrition in the Critically Ill Patient: A Meta-Analysis, JAMA 280, 2013–2019.PubMedCrossRefGoogle Scholar
  158. 158.
    Calder, P.C., Sherrington, E.J., Askanazi, J., and Newsholme, E.A. (1994) Inhibition of Lymphocyte Proliferation in vitro by Two Lipid Emulsions with Different Fatty Acid Compositions, Clin. Nutr. 13, 69–74.PubMedCrossRefGoogle Scholar
  159. 159.
    Battistella, F.D., Widergren, J.T., Anderson, J.T., Siepler, J.K., Weber, J.C., and MacColl, K. (1997) A Prospective, Randomized Trial of Intravenous Fat Emulsion Administration in Trauma Victims Requiring Total Parenteral Nutrition, J. Trauma 43, 52–58.PubMedGoogle Scholar
  160. 160.
    Furukawa, K., Yamamori, H., Takagi, K., Hayashi, N., Suzuki, R., Nakajima, N., and Tashiro, T. (2002) Influence of Soybean Oil Emulsion on Stress Response and Cell-Mediated Immune Function in Moderately or Severely Stressed Patients, Nutrition 18, 235–240.PubMedCrossRefGoogle Scholar
  161. 161.
    Gogos, C.A., Kalfarentzos, F.E., and Zoumbos, N.C. (1990) Effect of Different Types of Total Parenteral Nutrition on T-Lymphocyte Subpopulations and NK Cells, Am. J. Clin. Nutr. 51, 119–122.PubMedGoogle Scholar
  162. 162.
    Sedman, P.C., Somers, S.S., Ramsden, C.W., Brennan, T.G., Guillou, P.J. (1991) Effects of Different Lipid Emulsions on Lymphocyte Function During Total Parenteral Nutrition, Br. J. Surg. 78, 1396–1399.PubMedGoogle Scholar
  163. 163.
    Lenssen, P., Bruemmer, B.A., Bowden, R.A., Gooley, T., Aker, S.N., and Mattson, D. (1998) Intravenous Lipid Dose and Incidence of Bacteremia and Fungemia in Patients Undergoing Bone Marrow Transplantation, Am. J. Clin. Nutr. 67, 927–933.PubMedGoogle Scholar
  164. 164.
    Morlion, B.J., Torwesten, E., Lessire, A., Sturm, G., Peskar, B.M., Furst, P., and Puchstein, C. (1996) The Effect of Parenteral Fish Oil on Leukocyte Membrane Fatty Acid Composition and Leukotriene-Synthesizing Capacity in Postoperative Trauma, Metabolism 45, 1208–1213.PubMedCrossRefGoogle Scholar
  165. 165.
    Koller, M., Senkal, M., Kemen, M., Konig, W., Zumtobel, V., and Muhr, G. (2003) Impact of Omega-3 Fatty Acid Enriched TPN on Leukotriene Synthesis by Leukocytes After Major Surgery, Clin. Nutr. 22, 59–64.PubMedCrossRefGoogle Scholar
  166. 166.
    Wachtler, P., Konig, W., Senkal, M., Kemen, M., and Koller, M. (1997) Influence of a Total Parenteral Nutrition Enriched with ω-3 Fatty Acids on Leukotriene Synthesis of Peripheral Leukocytes and Systemic Cytokine Levels in Patients with Major Surgery, J. Trauma 42, 191–198.PubMedGoogle Scholar
  167. 167.
    Weiss, G., Meyer, F., Matthies, B., Pross, M., Koenig, W., and Lippert, H. (2002) Immunomodulation by Perioperative Administration of n−3 Fatty Acids, Br. J. Nutr. 87, S89-S94.PubMedCrossRefGoogle Scholar
  168. 168.
    Schauder, P., Rohn, U., Schafer, G., Korff, G., and Schenk, H.-D. (2002) Impact of Fish Oil Enriched Total Parenteral Nutrition on DNA Synthesis, Cytokine Release and Receptor Expression by Lymphocytes in the Postoperative Period, Br. J. Nutr. 87, S103-S110.PubMedCrossRefGoogle Scholar
  169. 169.
    Tsekos, E., Reuter, C., Stehle, P., and Boeden, G. (2004) Perioperative Administration of Parenteral Fish Oil Supplements in a Routine Clinical Setting Improves Patient Outcome After Major Abdominal Surgery, Clin. Nutr. 23, 325–330.PubMedCrossRefGoogle Scholar
  170. 170.
    Daly, J.M., Weintraub, F.N., Shou, J., Rosato, E.F., and Lucia, M. (1995) Enteral Nutrition During Multimodality Therapy in Upper Gastrointestinal Cancer Patients, Ann. Surg. 221, 327–338.PubMedCrossRefGoogle Scholar
  171. 171.
    Schilling, J., Vranjes, N., Fierz, W., Joller, H., Gyurech, D., Ludwig, E., Marathias, K., and Geroulanos, S. (1996) Clinical Outcome and Immunology of Postoperative Arginine, ω-3 Fatty Acids, and Nucleotide-Enriched Enteral Feeding: A Randomized Prospective Comparison with Standard Enteral and Low Calories/Low Fat IV Solutions, Nutrition 12, 423–429.PubMedCrossRefGoogle Scholar
  172. 172.
    Braga, M., Vignali, A., Gianotti, L., Cestari, A., Profili, M., and Di Carlo, V. (1996) Immune and Nutritional Effects of Early Enteral Nutrition After Major Abdominal Operations, Eur. J. Surg. 162, 105–112.PubMedGoogle Scholar
  173. 173.
    Daly, J.M., Lieberman, M.D., Golfine, J., Shou, J., Weintraub, F., Rosato, E.F., and Lavin, P. (1992) Enteral Nutrition with Supplemental Arginine, RNA, and Omega-3 Fatty Acids in Patients after Operation: Immunologic, Metabolic, and Clinical Outcome, Surgery 112, 56–67.PubMedGoogle Scholar
  174. 174.
    Gianotti, L., Braga, M., Fortis, C., Soldini, L., Vignali, A., Colombo, S., Radaelli, G., and Di Carlo, V. (1999) A Prospective, Randomised Clinical Trial on Perioperative Feeding with an Arginine-, Omega-3 Fatty Acid-, and RNA-Enriched Enteral Diet: Effect on Host Response and Nutritional Status, J. Parent. Ent. Nutr. 23, 314–320.CrossRefGoogle Scholar
  175. 175.
    Braga, M., Gianotti, L., Radaelli, G., Vignali, A., Mari, G., Gentilini, O., and Di Carlo, V. (1999) Perioperative Immunonutrition in Patients Undergoing Cancer Surgery, Arch. Surg. 134, 428–433.PubMedCrossRefGoogle Scholar
  176. 176.
    Heys, S.D., Walker, L.G., Smith, I., and Eremin, O. (1999) Enteral Nutritional Supplementation with Key Nutrients in Patients with Critical Illness and Cancer—A Meta-Analysis of Randomized Controlled Clinical Trials, Ann. Surg. 229, 467–477.PubMedCrossRefGoogle Scholar
  177. 177.
    Beale, R.J., Bryg, D.J., and Bihari, D.J. (1999) Immunonutrition in the Critically Ill: A Systematic Review of Clinical Outcome, Crit. Care Med. 27, 2799–2805.PubMedCrossRefGoogle Scholar
  178. 178.
    Heyland, D.K., Novak, F., Drover, J.W., Jain, A., Su, X.Y., and Suchner, U. (2001) Should Immunonutrition Become Routine in Critically Ill Patients? A Systematic Review of the Evidence, JAMA 286, 944–953.PubMedCrossRefGoogle Scholar
  179. 179.
    Cerra, F.B., Lehman, S., Konstantinides, N., Konstantinides, F., Shronts, E.P., and Holman, R. (1990) Effect of Enteral Nutrition on in vitro Tests of Immune Function in ICU Patients: A Preliminary Report, Nutrition 6, 84–87.PubMedGoogle Scholar
  180. 180.
    Weimann, A., Bastian, L., Bischoff, W.E., Grotz, M., Hansel, M., Lotz, J., Trautwein, C., Tusch, G., Schlitt, H.J., and Regel, G. (1998) Influence of Arginine, Omega-3 Fatty Acids and Nucleotide-Supplemented Enteral Support on Systemic Inflammatory Response Syndrome and Multiple Organ Failure in Patients After Severe Trauma, Nutrition 14, 165–172.PubMedCrossRefGoogle Scholar
  181. 181.
    Gadek, J.E., DeMichele, S.J., Karlstad, M.D., Pacht, E.R., Donahoe, M., Albertson, T.E., Van Hoozen, C., Wennberg, A.K., Nelson, J., Noursalehi, M., and the Enteral Nutrition in ARDS Study Group (1999) Effect of Enteral Feeding with Eicosapentaenoic Acid γ-Linolenic Acid, and Antioxidants in Patients with Acute Respiratory Distress Syndrome, Crit. Care Med. 27, 1409–1420.PubMedCrossRefGoogle Scholar
  182. 182.
    Pacht, E.R., DeMichele, S.J., Nelson, J.L., Hart, J., Wennberg, A.K., and Gadek, J.E. (2003) Enteral Nutrition with Eicosapentaenoic Acid, Gamma-Linolenic Acid, and Antioxidants Reduces Alveolar Inflammatory Mediators and Protein Influx in Patients with Acute Respiratory Distress Syndrome, Crit. Care Med. 31, 491–500.PubMedCrossRefGoogle Scholar
  183. 183.
    Mayer, K., Fegbeutel, C., Hattar, K., Sibelius, U., Kramer, H.J., Heuer, K.U., Temmesfeld-Wollbruck, B., Gokorsch, S., Grimminger, F., and Seeger, W. (2003) ω-3 vs, ω-6 Lipid Emulsions Exert Differential Influence on Neutrophils in Septic Shock Patients: Impact on Plasma Fatty Acids and Lipid Mediator Generation, Intensive Care Med. 29, 1472–1481.PubMedCrossRefGoogle Scholar
  184. 184.
    Mayer, K., Gokorsch, S., Fegbeutel, C., Hattar, K., Rosseau, S., Walmrath, D., Seeger, W., and Grimminger, F. (2003) Parenteral Nutrition with Fish Oil Modulates Cytokine Response in Patients with Sepsis, Am. J. Respir. Crit. Care Med. 167, 1321–1328.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2004

Authors and Affiliations

  1. 1.Institute of Human Nutrition, School of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations