Lipids

, Volume 39, Issue 11, pp 1045–1053

Structure and function of animal fatty acid synthase

Article

Abstract

Fatty acid synthase (FAS; EC 2.3.1.85) of animal tissues is a complex multifunctional enzyme consisting of two identical monomers. The FAS monomer (∼270 kDa) contains six catalytic activities and from the N-terminus the order is β-ketoacyl synthase (KS), acetyl/malonyl transacylase (AT/MT), β-hydroxyacyl dehydratase (DH), enoyl reductase (ER), β-ketoacyl reductase (KR), acyl carrier protein (ACP), and thioesterase (TE). Although the FAS monomer contains all the activities needed for palmitate synthesis, only the dimer form of the synthase is functional. Both the biochemical analyses and the small-angle neutron-scattering analysis determined that in the dimer form of the enzyme the monomers are arranged in a head-to-tail manner generating two centers for palmitate synthesis. Further, these analyses also suggested that the component activities of the monomer are organized in three domains. Domain I contains KS, AT/MT, and DH, domain II contains ER, KR, and ACP, and domain III contains TE. Approximately one fourth of the monomer protein located between domains I and II contains no catalytic activities and is called the interdomain/core region. This region plays an important role in the dimer formation. Electron cryomicrographic analyses of FAS revealed a quaternary structure at approximately 19 Å resolution, containing two monomers (180×130×75 Å) that are separated by about 19 Å, and arranged in an antiparallel fashion, which is consistent with biochemical and neutron-scattering data. The monomers are connected at the middle by a hinge generating two clefts that may be the two active centers of fatty acid synthesis. Normal mode analysis predicted that the intersubunit hinge region and the intrasubunit hinge located between domains II and III are highly flexible. Analysis of FAS particle images by using a simultaneous multiple model single particle refinement method confirmed that FAS structure exists in various conformational states. Attempts to get higher resolution of the structure are under way.

Abbreviations

ACP

acyl carrier protein

AT/MT

acetyl/malonyl transacylase

DH

dehydratase

DI to DIII

domains I to III

ER

enoyl reductase

FAS

fatty acid synthase

KR

ketoacyl reductase

KS

ketoacyl synthase

TE

thioesterase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wakil, S.J., Stoops, J.K., and Joshi, A.C. (1983) Fatty Acid Synthesis and Its Regulation, Annu. Rev. Biochem. 52, 537–579.PubMedCrossRefGoogle Scholar
  2. 2.
    Wakil, S.J. (1989) The Fatty Acid Synthase: A Proficient Multifunctional Enzyme, Biochemistry 28, 4523–4530.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, S. (1994) The Animal Fatty Acid Synthase: One Gene, One Polypeptide, Seven Enzymes, FASEB J. 8, 1248–1259.PubMedGoogle Scholar
  4. 4.
    Smith, S., Witkowski, A., and Joshi, A.K. (2003) Structural and Functional Organization of Animal Fatty Acid Synthase, Prog. Lipid Res. 42, 289–317.PubMedCrossRefGoogle Scholar
  5. 5.
    Jayakumar, A., Tai, M.-H., Huang, W.-Y., Al-Feel, W., Hsu, M., Abu-Elheiga, L., Chirala, S.S., and Wakil, S.J. (1995) Human Fatty Acid Synthase: Properties and Molecular Cloning, Proc. Natl. Acad. Sci. USA 92, 8695–8699.PubMedCrossRefGoogle Scholar
  6. 6.
    Hannun, Y.A., and Obeid, L.M. (2002) The Ceramide-Centric Universe of Lipid-Mediated Cell Regulation: Stress Encounters of the Lipid Kind, J. Biol. Chem. 277, 25847–25850.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuhajda, F.P., Jenner, K., Wood, F.D., Hennigar, R.A., Jacobs, L.B., Dick, J.D., and Pasternack, G.R. (1994) Fatty Acid Synthesis: A Potential Selective Target for Antineoplastic Therapy, Proc. Natl. Acad. Sci. USA 91, 6379–6383.PubMedCrossRefGoogle Scholar
  8. 8.
    Pizer, E.S., Thupari, J., Han, W.F., Pinn, M.L., Cherst, F.J., Frehywot, G.L., Townsend, C.A., and Kuhajda, F.P. (2000) Malonyl-CoA Is a Potential Mediator of Cytotoxicity Induced by Fatty Acid Synthase Inhibition in Human Breast Cancer Cells and Xenografts, Cancer Res. 60, 213–238.PubMedGoogle Scholar
  9. 9.
    Menendez, J.A., Vellon, L., Mehmi, I., Oza, B.P., Ropero, S., Colomer, R., and Lupu, R. (2004) Inhibition of Fatty Acid Synthase (FAS) Suppresses HER2/neu (erbB-2) Oncogene Overexpression in Cancer Cells, Proc. Natl. Acad. Sci. USA 101, 10715–10720.PubMedCrossRefGoogle Scholar
  10. 10.
    Loftus, T.M., Jaworsky, D.E., Frehywot, G.L., Towsand, C.A., Ronnett, G.V., Lane, M.D., and Kuhajda, F.P. (2000) Reduced Food Intake and Body Weight in Mice Treated with Fatty Acid Synthase Inhibitors, Science 288, 2379–2381.PubMedCrossRefGoogle Scholar
  11. 11.
    Chirala, S.S., Chang, H., Matzuk, M., Abu-Elheiga, L., Mao, J., Mahon, K., Finegold, M., and Wakil, S.J. (2003) Fatty Acid Synthesis Is Essential in Embryonic Development: Fatty Acid Synthase Null Mutants and Most of the Heterozygotes Die In Utero, Proc. Natl. Acad. Sci. USA 100, 6358–6363.PubMedCrossRefGoogle Scholar
  12. 12.
    Wakil, S.J. (1970) Fatty Acid Metabolism, in Lipid Metabolism (Wakil, S.J., ed.), pp. 1–48, Academic Press, New York.Google Scholar
  13. 13.
    Wakil, S.J. (1958) Requirement of Bicarbonate in Fatty Acid Synthesis, J. Am. Chem. Soc. 80, 2908.CrossRefGoogle Scholar
  14. 14.
    Wakil, S.J., Pugh, E.L., and Sauer, F. (1964) The Mechanism of Fatty Acid Synthesis, Proc. Natl. Acad. Sci. USA 52, 106–114.PubMedCrossRefGoogle Scholar
  15. 15.
    Stoops, J.K., Arslanian, A.W., Oh, Y.H., Aune, K.C., Vanaman, T.C., and Wakil, S.J. (1975) Presence of Two Polypeptide Chains Comprising Fatty Acid Synthetase, Proc. Natl. Acad. Sci. USA 75, 1940–1944.CrossRefGoogle Scholar
  16. 16.
    Stoops, J.K., Arslanian, A.W., Chalmers, J.H., Joshi, V.C., and Wakil, S.J. (1977) Fatty Acid Synthase Complexes, in Bioorganic Chemistry (Van Tamelien, E.E., ed.), Vol. 1, pp. 339–370, Academic Press, New York.Google Scholar
  17. 17.
    Tsukamoto, Y., and Wakil, S.J. (1988) Isolation and Mapping of the Beta-Hydroxyacyl Dehydratase Activity of Chicken Liver Fatty Acid Synthase, J. Biol. Chem. 263, 16225–16229.PubMedGoogle Scholar
  18. 18.
    Chirala, S.S., Kasturi, R., Pazirandeh, M., Stolow, D.T., Huang, W.-Y., and Wakil, S.J. (1989) A Novel cDNA Extension Procedure: Isolation of Chicken Fatty Acid Synthase cDNA Clones, J. Biol. Chem. 264, 3750–3757.PubMedGoogle Scholar
  19. 19.
    Holzer, K.R., Liu, W., and Hammes, G.G. (1989) Molecular Cloning and Sequencing of Chicken Liver Fatty Acid Synthase cDNA, Proc. Natl. Acad. Sci. USA 86, 4387–4391.PubMedCrossRefGoogle Scholar
  20. 20.
    Haung, W.-Y., Chirala, S.S., and Wakil, S.J. (1994) Amino-Terminal Blocking Group and Sequence of the Animal Fatty Acid Synthase, Arch. Biochem. Biophys. 314, 45–49.CrossRefGoogle Scholar
  21. 21.
    Amy, C.M., Witkowski, A., Naggert, J., Williams, B., Randhawa, Z., and Smith, S. (1989) Molecular Cloning and Sequencing of cDNAs Encoding the Entire Rat Fatty Acid Synthase, Proc. Natl. Acad. Sci. USA 86, 3114–3118.PubMedCrossRefGoogle Scholar
  22. 22.
    Beck, K.-I., Schreglmann, R., Stathopulos, I., Klein, H., Hoch, J., and Schweizer, M. (1992) The Fatty Acid Synthase (FAS) Gene and Its Promoter in Rattus Norvegicus, DNA Seq. 2, 359–386.PubMedGoogle Scholar
  23. 23.
    Paulauskis, J.D., and Sul, H.S. (1989) Structure of Mouse Fatty Acid Synthase mRNA: Identification of the Two NADPH Binding Sites, Biochem. Biophys. Res. Commun. 158, 690–695.PubMedCrossRefGoogle Scholar
  24. 24.
    Chirala, S.S., Huang, W.-Y., Jayakumar, A., Sakai, K., and Wakil, S.J. (1997) Animal Fatty Acid Synthase: Functional Mapping and Cloning and Expression of the Domain I Constituent Activities, Proc. Natl. Acad. Sci. USA 94, 5588–5593.PubMedCrossRefGoogle Scholar
  25. 25.
    Stoops, J.K., and Wakil, S.J. (1981) Animal Fatty Acid Synthase: A Novel Arrangement of the β-Ketoacyl Synthase Site Comprising Domains of the Subunits, J. Biol. Chem. 256, 5128–5133.PubMedGoogle Scholar
  26. 26.
    Stoops, J.K., Wakil, S.J., Uberbacher, E.C., and Bunick, G.J. (1987) Small-Angle Neutron-Scattering and Electron Microscopic Studies of the Chicken Liver Fatty Acid Synthase, J. Biol. Chem. 262, 10246–10251.PubMedGoogle Scholar
  27. 27.
    Singh, N., Wakil, S.J., and Stoops, J.K. (1984) On the Question of Half or Full-Site Reactivity of Animal Fatty Acid Synthetase, J. Biol. Chem. 259, 3605–3611.PubMedGoogle Scholar
  28. 28.
    Rangan, V.S., and Smith, S. (1996) Expression in Escherichia Coli and Refolding of the Malonyl-Acetyltransferase Domain of the Multifunctional Animal Fatty Acid Synthase, J. Biol. Chem. 271, 31749–31755.PubMedCrossRefGoogle Scholar
  29. 29.
    Rangan, V.S., and Smith, S. (1997) Alteration of the Substrate Specificity of the Malonyl-CoA/Acetyl-CoA:Acyl Carrier Protein S-Acyltransferase Domain of the Multi Functional Fatty Acid Synthase by Mutation of a Single Arginine Residue, J. Biol. Chem. 272, 11975–11978.PubMedCrossRefGoogle Scholar
  30. 30.
    Joshi, A.K., Witkowski, A., and Smith, S. (1997) Mapping of Functional Interactions Between Domains of the Animal Fatty Acid Synthase by Mutant Complementation In Vitro, Biochemistry 36, 2316–2322.PubMedCrossRefGoogle Scholar
  31. 31.
    Witkowski, A., Joshi, A.K., Lindqvist, Y., and Smith, S. (1999) Conversion of β-Ketoacyl Synthase to a Malonyl Decarboxylase by Replacement of the Active-Site Cysteine with Glutamine, Biochemistry 38, 11643–11650.PubMedCrossRefGoogle Scholar
  32. 32.
    Witkowski, A., Joshi, A.K., and Smith, S. (1996) Mechanism of the_-Ketoacyl Synthase Reaction Catalyzed by the Animal Fatty Acid Synthase, Biochemistry 41, 10887–10887.Google Scholar
  33. 33.
    Rangan, V.S., Joshi, A.K., and Smith, S. (2001). Mapping the Functional Topology of the Animal Fatty Acid Synthase by Mutant Complementation In Vitro, Biochemistry 40, 10792–10799.PubMedCrossRefGoogle Scholar
  34. 34.
    Joshi, A.K., and Smith, S. (1993). Construction, Expression, and Characterization of a Mutated Animal Fatty Acid Synthase Deficient in the Dehydrase Function, J. Biol. Chem. 268, 22508–22513.PubMedGoogle Scholar
  35. 35.
    Pazirandeh, M., Chirala, S.S., Huang, W.-Y., and Wakil, S.J. (1989) Characterization of Recombinant Thioesterase and Acyl Carrier Protein Domains of Chicken Fatty Acid Synthase Expressed in Escherichia Coli, J. Biol. Chem. 264, 18195–18201.PubMedGoogle Scholar
  36. 36.
    Pazirandeh, M., Chirala, S.S., and Wakil, S.J. (1991) Site-Directed Mutagenesis Studies on the Recombinant Thioesterase Domain of Chicken Fatty Acid Synthase Expressed in Escherichia Coli, J. Biol. Chem. 266, 20946–20952.PubMedGoogle Scholar
  37. 37.
    Tai, M.H., Chirala, S.S., and Wakil, S.J. (1993) Roles of Ser101, Asp236, and His237 in Catalysis of Thioesterase II and of the C-terminal Region of the Enzyme in Its Interaction with Fatty Acid Synthase, Proc. Natl. Acad. Sci. USA 90, 1852–1856.PubMedCrossRefGoogle Scholar
  38. 38.
    Chakravarty, B., Gu, Z., Chirala, S.S., Wakil, S.J., Quiocho, F.A. (2004) Human Fatty Acid Synthase: Structure and Substrate Selectivity of the Thioesterase Domain, Proc. Natl. Acad. Sci. USA 101, 15567–15572.PubMedCrossRefGoogle Scholar
  39. 39.
    Jayakumar, A., Chirala, S.S., and Wakil, S.J. (1997) Human Fatty Acid Synthase: Assembling Recombinant Halves of the Fatty Acid Synthase Subunit Protein Reconstitutes Enzyme Activity, Proc. Natl. Acad. Sci. USA 94, 12326–12330.PubMedCrossRefGoogle Scholar
  40. 40.
    Chirala, S.S., Jayakumar, A., Gu, Z.-W., and Wakil, S.J. (2001) Human Fatty Acid Synthase: Role of Interdomain in the Formation of Catalytically Active Synthase Dimer, Proc. Natl. Acad. Sci. USA 98, 3104–3108.PubMedCrossRefGoogle Scholar
  41. 41.
    Joshi, A.K., Witkowski, A., and Smith, S. (1998) The Malonyl/Acetyltransferase and β-Ketoacyl Synthase Domains of the Animal Fatty Acid Synthase Can Cooperate with the Acyl Carrier Protein Domain of Either Subunit, Biochemistry 37, 2515–2523.PubMedCrossRefGoogle Scholar
  42. 42.
    Witkowski, A., Joshi, A.K., Rangan, V.S., Falick, A.M., Witkowska, H.E., and Smith, S. (1999). Dibromopropanone Cross-Linking of the Phosphopantetheine and Active-Site Cysteine Thiols of the Animal Fatty Acid Synthase Can Occur Both Inter-and Intrasubunit. Reevaluation of the Side-by-Side, Antiparallel Subunit Model, J. Biol. Chem. 274, 11557–11563.PubMedCrossRefGoogle Scholar
  43. 44.
    Joshi, A.K., Rangan, V.S., Witkowski, A., and Smith, S. (2003). Engineering of an Active Animal Fatty Acid Synthase Dimer with Only One Competent Subunit, Chem. Biol. 10, 169–173.PubMedCrossRefGoogle Scholar
  44. 45.
    Brink, J., Ludtke, S.J., Yang, C.-Y., Gu, Z.-W., Wakil, S.J., and Chiu, W. (2002) Quaternary Structure of Human Fatty Acid Synthase by Electron Cryomicroscopy, Proc. Natl. Acad. Sci. USA 99, 13–143.CrossRefGoogle Scholar
  45. 46.
    Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions, J. Struct. Biol. 128, 82–97.PubMedCrossRefGoogle Scholar
  46. 47.
    Ming, D., Kong, Y., Wakil, S.J., Brink, J., and Ma, J. (2002) Domain Movements in Human Fatty Acid Synthase by Quantized Elastic Deformational Model, Proc. Natl. Acad. Sci. USA 99, 7895–7899.PubMedCrossRefGoogle Scholar
  47. 48.
    Ming, D., Kong, Y., Lambert, M.A., Huang, Z., and Ma, J. (2002). How To Describe Protein Motion Without Amino Acid Sequence and Atomic Coordinates, Proc. Natl. Acad. Sci. USA 99, 8620–8625.PubMedCrossRefGoogle Scholar
  48. 49.
    Brink, J., Ludtke, S.J., Kong, Y., Wakil, S.J., Ma, J., and Chiu, W. (2004) Experimental Verification of Conformational Variation of Human Fatty Acid Synthase as Predicted by Normal Mode Analysis, Structure (Cambr.) 12, 185–191.Google Scholar

Copyright information

© AOCS Press 2004

Authors and Affiliations

  1. 1.Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHouston

Personalised recommendations