Lipids

, Volume 39, Issue 10, pp 933–953 | Cite as

Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols

Review

Abstract

Alkyl and fatty acid glycosides have become of great commercial interest in general and specifically for the pharmaceutical, cosmetic, and food industries. Natural surfactants are good sources for future chemical preparation of these glycosides. This review article shows an astonishing diversity of natural surfactants that could be used in laboratories and industry. More than 250 natural surfactants, including their chemical structures and biological activities, are described in this review article.

Abbreviations

HG

heterocyst glycolipids

HLB

hydrophile-lipophile balance

MEL

mannosylerythritollipids

SEFA

sucrose esters(s) of fatty acids

TAACF

Tuberculosis Antimicrobial and Acquisition Coordinating Facility

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dembitsky, V.M. (2004) Chemistry and Biodiversity of Biologically Active Natural Glycosides, Chem. Biodiver. 1, 673–781.CrossRefGoogle Scholar
  2. 2.
    Clayton, W. (1943) Theory of Emusions, p. 127, McGraw-Hill, New York.Google Scholar
  3. 3.
    Griffin, W.C. (1949) Classification of Surface-Active Agents by “HLB,” J. Soc. Cosmet. Chem. 1, 311–324.Google Scholar
  4. 4.
    Griffin, W.C. (1954) Calculation of HLB Values of Non-Ionic Surfactants, J. Soc. Cosmet. Chem. 5, 259–267.Google Scholar
  5. 5.
    Ikan, R. (ed.) (1999) Naturally Occurring Glycosides, John Wiley & Sons, Chichester, England.Google Scholar
  6. 6.
    Ernst, B., Hart, G.W., and Sinaÿ, P. (eds.) (2000) Carbohydrates in Chemistry and Biology, Wiley-VCH, Weinheim.Google Scholar
  7. 7.
    Levy, D.E., and Tang, C. (1995). Chemistry of C-Glycosides, Elsevier, Amsterdam.Google Scholar
  8. 8.
    Kates, M. (ed.) (1990) Glycolipids, Phosphoglycolipids and Sulfoglycolipids. Handbook of Lipid Research, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  9. 9.
    Harborne, J.B., and Williams, C.A. (2001) Anthocyanins and Other Flavonoids, Nat. Prod. Rep. 18, 310–333.PubMedCrossRefGoogle Scholar
  10. 10.
    Harborne, J.B. (1993) Flavonoids: Advances in Research Since 1986, CRC Press, Boca Raton, Florida.Google Scholar
  11. 11.
    Esko, J., Marth, J., Cummings, R., Freeze, H., Varki, A., and Hart, G. (eds.) (1999) Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  12. 12.
    Frank, H.A., Young, A.J., Britton, G., and Cogdell, R.J. (eds.) (1999) The Photochemistry of Carotenoids, Kluwer Academic Publishers, Dordrecht.Google Scholar
  13. 13.
    Kosaric, N. (1993) Biosurfactants: Production, Properties, Applications, Marcel Dekker, New York.Google Scholar
  14. 14.(a)
    Holmberg, K. (2001) Natural Surfactants, Curr. Opin. Colloid Interface Sci. 6, 148–159; (b) Tyman, J.H.P. (ed.) (1992) Surfactants in Lipid Chemistry: Recent Synthetic, Physical, and Biodegradative Studies, Royal Society of Chemistry, London.CrossRefGoogle Scholar
  15. 15.
    Satoshi, O. (ed.) (2002) Macrolide Antibiotics: Chemistry, Biology, and Practice, Academic Press, Amsterdam, Boston.Google Scholar
  16. 16.
    Rosen, M.J. (2004) Surfactants and Interfacial Phenomena, 3rd edn., pp. 464, John Wiley & Sons, New York.Google Scholar
  17. 17.
    Van der Meer, M.T.J., Schouten, S., Hanada, S., Hopmans, E.C., Sinninghe Damsté, J.S., and Ward, D.M. (2002) Alkane-1,2-diol-Based Glycosides and Fatty Glycosides and Wax Esters in Roseiflexus castenholzii and Hot Spring Microbial Mats, Arch. Microbiol. 178, 229–237.CrossRefGoogle Scholar
  18. 18.
    Rezanka, T. (2002) Glycosides of Polyenoic Branched Fatty Acids from Myxomycetes, Phytochemistry 60, 639–646.PubMedCrossRefGoogle Scholar
  19. 19.
    Jude, A.R., Little, J.M., Freeman, J.P., Evans, J.E., Radominska-Pandya, A., and Grant, D.F. (2000) Linoleic Acid Diols Are Novel Substrates for Human UDP-Glucuronosyltransferases, Arch. Biochem. Biophys. 380, 294–302.PubMedCrossRefGoogle Scholar
  20. 20.
    Řezanka, T., and Dembitsky, V.M. (2003) Brominated Oxylipins and Oxylipin Glycosides from Red Sea Corals, Eur. J. Org. Chem. 14, 309–316.CrossRefGoogle Scholar
  21. 21.
    Simko, I., Omer, E.A., Ewing, E.E., McMurry, S., Koch, J.L., and Davies, P.J. (1996) Tuberonic (12-OH-jasmonic) Acid Glucoside and Its Methyl Ester in Potato, Phytochemistry 43, 727–730.CrossRefGoogle Scholar
  22. 22.
    Matsuura, H., Yoshira, T., Ichihara, A., Kikuta, Y., and Koda, Y. (1993) Tuber-forming Substances in Jerusalem Artichoke (Helianthus tuberosus L.), Biosci. Biotech. Biochem. 57, 1253–1256.Google Scholar
  23. 23.
    Matsuura, H., Yoshihara, T., and Ichihara, A. (1993) 4 New Polyacetylenic Glucosides, Methyl β-d-Glucopyranosyl Helianthenate C-F, from Jerusalem Artichoke (Helianthus tuberosus L.), Biosci. Biotechnol. Biochem. 57, 1492–1498.Google Scholar
  24. 24.
    Wang, M., Likuzaki, H., Zhu, N., Sang, N., Nakatani, N., and Ho, C.T. (2000) Isolation and Structural Elucidation of Two New Glycosides from Sage (Salvia officinalis L.), J. Agric. Food Chem. 48, 235–238.PubMedCrossRefGoogle Scholar
  25. 25.
    MacLeod, J.K., Rasmussen, H.B., and Wills, A.C. (1997) A New Glycoside Antimicrobial Agent from Persoonia linearis×pinifolia, J. Nat. Prod. 60, 620–622.PubMedCrossRefGoogle Scholar
  26. 26.
    Takeda, Y., Takechi, A., Masuda, T., and Otsuka, H. (1998) An Acyclic Monoterpene Glucosyl Ester from Lantana lilacia, Planta Med. 64, 78–79.PubMedGoogle Scholar
  27. 27.
    Yoshikawa, K., Satou, Y., Tokunaga, Y., Tanaka, M., Arihara, S., and Nigam, S.K. (1998) Four Acylated Triterpenoid Saponins from Albizia procera J. Nat. Prod. 61, 440–445.PubMedCrossRefGoogle Scholar
  28. 28.
    Krajewaski, D., Duque, C., and Schreier, P. (1997) Aliphatic β-d-Glucosides from Fruits of Carica pubescens, Phytochemistry 45, 1627–1631.CrossRefGoogle Scholar
  29. 29.
    Stermitz, F.R., Cashman, K.K., Halligan, K.M., Morel, C., Tegos, G.P., and Lewis, K. (2003) Polyacylated Neohesperidosides from Geranium caespitosum: Bacterial Multidrug Resistance Pump Inhibitors, Bioorg. Med. Chem. Lett. 13, 1915–1918.PubMedCrossRefGoogle Scholar
  30. 30.
    Boros, C., Katz, B., Mitchell, S., Pearce, C., Swinbank, K., and Taylor, D. (2002) Emmyguyacins A and B: Unusual Glycolipids from a Sterile Fungus Species That Inhibit the Low-pH Conformational Change of Hemagglutinin A During Replication of Influenza Virus, J. Nat. Prod. 65, 108–114.PubMedCrossRefGoogle Scholar
  31. 31.
    King, R.R., and Calhoun, L.A. (1988) 2,3-Di-O-and 1,2,3,-Tri-O-Acylated Glucose Esters from the Glandular Trichomes of Datura metel, Phytochemistry 27, 3761–3763.CrossRefGoogle Scholar
  32. 32.
    King, R.R., Colhoun, L.A., Singh, P.R., and Boucher, A. (1993) Characterization of 2,3,4,3′-Tetra-O-acylated Sucrose Esters Associated with the Glandular Trichomes of Lycopersicon typicum, J. Agric. Food Chem. 41, 469–473.CrossRefGoogle Scholar
  33. 33.
    Severson, R.F., Arrendale, R.F., Chortyk, O.T., Green, C.R., Thome, F.A., Stewart, J.L., and Johnson, A.W. (1985) Isolation and Characterization of the Sucrose Esters of the Cuticular Waxes of Green Tobacco Leaf, J. Agric. Food Chem. 33, 870–875.CrossRefGoogle Scholar
  34. 34.
    Arrendale, R.F., Severson, R.F., Sisson, V.A., Costello, C.E., Leary, J.A., Himmelsbach, D.S., and Van Halbeek, H. (1990) Characterization of the Sucrose Esters from Nicotiana glutinosa, J. Agric. Food Chem. 38, 75–85.CrossRefGoogle Scholar
  35. 35.
    Matsuzaki, T., Shinozaki, Y., Hagimori, M., Tobita, T., Shigematsu, H., and Koiwai, A. (1992) Novel Glycerolipids and Glycolipids from the Surface Lipids of Nicotiana benthamiana, Biosci. Biotech. Biochem. 56, 1565–1569.CrossRefGoogle Scholar
  36. 36.
    Ohya, I., Shinozaki, Y., Tobita, T., Takahashi, H., Matsuzaki, T., and Koiwai, A. (1994) Sucrose Esters from the Surface Lipids of Nicotiana cavicola, Phytochemistry 37, 143–145.PubMedCrossRefGoogle Scholar
  37. 37.
    King, R.R., Singh, R.P., and Calhoun, L.A. (1988) Elucidation of Structures for a Unique Class of 2,3,4,3′-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum neocardenusii Hawkes and Hjerting (PI 498129), Carbohydr. Res. 173, 235–241.CrossRefGoogle Scholar
  38. 38.
    Kandra, L., and Wagner, G.J. (1988) Studies of the Site and Mode of Biosynthesis of Tobacco Trichome Exudate Components, Arch. Biochem. Biophys. 265, 425–432.PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuzaki, T., Koseki, K., and Koiwai, A. (1988) Germination and Growth-Inhibition of Surface Lipids from Nicotiana Species and Identification of Sucrose Esters, Agric. Biol. Chem. 52, 1889–1897.Google Scholar
  40. 40.
    Ohya, I., Shinozaki, Y., Tobita, T., Takahashi, H., and Matsuzaki, T. (1996) Sucrose Esters from the Surface Lipids of Petunia hybrida, Phytochemistry 47, 787–789.CrossRefGoogle Scholar
  41. 41.
    King, R.R., Calhoun, L.A., Singh, R.P., and Boucher, A. (1990) Sucrose Esters Associated with glandular Trichomes of Wild Lycopersicon Species, Phytochemistry 29, 2115–2118.CrossRefGoogle Scholar
  42. 42.
    King, R.R., Pelletier, Y., Singh, R.P., and Calhoun, L.A. (1986) 3,4-Di-O-isobutyryl-6-O-Caprylsucrose: The Major Component of a Novel Sucrose Ester Complex from the Type B Glandular Trichomes of Solanum berthaultii Hawkes (PI 473340), J. Chem. Soc. Chem. Commun., 1078–1079.Google Scholar
  43. 43.
    King, R.R., Singh, R.P., and Boucher, A. (1987) Variation in Sucrose Esters from the Type B Glandular Trichomes of Certain Wild Potato Species, Am. Potato J. 64, 529–534.Google Scholar
  44. 44.
    King, R.R., Singh, R.P., and Calhoun, L.A. (1987) Isolation and Characterization of 3,3′,4,6-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum berthaultii Hawkes (PI 265857), Carbohydr. Res. 166, 113–121.CrossRefGoogle Scholar
  45. 45.
    King, R.R., Singh, R.P., and Calhoun, L.A. (1988) Elucidation of Structures for a Unique Class of 2,3,4,3′-Tetra-O-acylated Sucrose Esters from the Type B Glandular Trichomes of Solanum neocardenusii Hawkes and Hjerting (PI 498129), Carbohydr. Res. 173, 235–241.CrossRefGoogle Scholar
  46. 46.
    Matsuzaki, T., Shinozaki, Y., Suhara, S., Tobita, T., Shigematsu, H., and Koiwai, A. (1991) Leaf Surface Glycolipids from Nicotiana acuminata and Nicotiana pauciflora, Agric. Biol. Chem. 55, 1417–1419.Google Scholar
  47. 47.
    King, R.R., and Calhoun, L.A. (1988) 3,4-Di-O-and 2,3,4-Tri-O-acylated Glucose Esters from the Glandular Trichomes of Nontuberous Solanum species, Phytochemistry 27, 3765–3768.CrossRefGoogle Scholar
  48. 48.
    Burke, B.A., Goldsby, G., and Mudd, J.B. (1987) Polar Epicuticular Lipids of Lycopersicon pennellii, Phytochemistry 26, 2567–2571.CrossRefGoogle Scholar
  49. 49.
    Hill, K., and Rhode, O. (1999) Sugar-Based Surfactants for Consumer Products and Technical Applications, FETT/Lipid 101, 25–33.CrossRefGoogle Scholar
  50. 50.
    Akoh, C.C., and Swanson, B.G. (1994) Carbohydrate Polyesters as Fat Substitutes, Marcel Dekker, New York.Google Scholar
  51. 51.
    Kobayashi, J., Doi, Y., and Ishibashi, M. (1994) Shimofuridin-A, a Nucleoside Derivative Embracing an Acylfucopyranoside Unit Isolated from the Okinawan Marine Tunicate Aplidium multiplicatum, J. Org. Chem. 59, 255–257.CrossRefGoogle Scholar
  52. 52.
    Doi, Y., Ishibashi, M., and Kobayashi, J. (1994) Isolation and Structure of Shimofuridins B-G from the Okinawan Marine Tunicate Aplidium multiplicatum, Tetrahedron 50, 8651–8656.CrossRefGoogle Scholar
  53. 53.
    Riva, S. (2002) Enzymatic Modification of the Sugar Moieties of Natural Glycosides, J. Mol. Catal. B Enzymol. 19, 43–54.CrossRefGoogle Scholar
  54. 54.
    Lang, S., and Wullbrandt, D. (1999) Rhamnose Lipids—Biosynthesis, Microbial Production and Application Potential, Appl. Microbiol. Biotechnol. 51, 22–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Rosenberg, E., and Ron, E.Z. (1999) High-and Low-Molecular Mass Microbial Surfactants, Appl. Microbiol. Biotechnol. 52, 154–162.PubMedCrossRefGoogle Scholar
  56. 56.
    Mailer, R.M., and Soberon-Chavez, G. (2000) Pseudomonas aeruginosa Rhamnolipids: Biosynthesis and Potential Applications, Appl. Microbiol. Biotechnol. 54, 625–633.CrossRefGoogle Scholar
  57. 57.
    Lang, S. (2002) Biological Amphiphiles (Microbial Biosurfactants), Curr. Opin. Colloid Interf. Sci. 7, 12–20.CrossRefGoogle Scholar
  58. 58.
    Ron, E.Z., and Rosenberg, E. (2002) Biosurfactants and Oil Bioremediatin, Curr. Opin. Biotechnol. 13, 249–252.PubMedCrossRefGoogle Scholar
  59. 59.
    Bergstrom, S., Theorell, H., and Davide, H. (1946) On a Metabolic Product of Ps. pyocyanea, Pyolipic Acid, Active Against Myobacteria tuberculosis, Ark. Kem. Mineral Geol. 23A, 1–12.Google Scholar
  60. 60.
    Jarvis, F.G., and Johnson, M.J. (1949) A Glyco-Lipide Produced by Pseudomonas aeruginosa, J. Am. Chem. Soc. 71, 4124–4126.CrossRefGoogle Scholar
  61. 61.
    Edwards, J.R., and Hayashi, J.A. (1965) Structure of a Rhamnolipid from Pseudomonas aeruginosa, Arch. Biochem. Biophys. 111, 415–421.PubMedCrossRefGoogle Scholar
  62. 62.
    Hisatsuka, K., Nakahara, T., Sano, N., and Yamada, K. (1971) Formation of Rhamnolipid by Pseudomonas aeruginosa and Its Function in Hydrocarbon Fermentation, Agric. Biol. Chem. 35, 686–692.Google Scholar
  63. 63.
    Itoh, S., Honda, H., Tomita, F., and Suzuki, T. (1971) Rhamnolipids Produced by Pseudomonas aeruginosa Grown on n-Paraffin, J. Antibiot. (Tokyo) 24, 855–859.Google Scholar
  64. 64.
    Yamaguchi, M., Sato, A., and Yukuyama, A. (1976) Microbial Production of Sugar-Lipids, Chem. Ind. 4, 741–742.Google Scholar
  65. 65.
    Hirayama, T., and Kato, I. (1982) Novel Methyl Rhamnolipids from Pseudomonas aeruginosa, FEBS Lett. 139, 81–85.CrossRefGoogle Scholar
  66. 66.
    Syldatk, C., Lang, S., Wagner, F., Wray, V., and Witte, L. (1985) Chemical and Physical Characterization of Four Interfacial-Active Rhamnolipids from Pseudomonas Species DSM 2874 Grown on n-Alkanes, Z. Naturforsch. 40, 51–60.Google Scholar
  67. 67.
    Syldatk, C., Lang, S., Matulovic, U., and Wagner, F. (1985) Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas Species DSM 2874, Z. Naturforsch. 40, 61–67.Google Scholar
  68. 68.
    Rendell, N.B., Taylor, G.W., Somerville, M., Todd, H., Wilson, R., and Cole, J. (1990) Characterization of Pseudomonas Rhamnolipids, Biochim. Biophys. Acta 1045, 189–193.PubMedGoogle Scholar
  69. 69.
    Abalos, A., Pinazo, A., Infane, M.R., Casals, M., Garcýa, F., and Manresa, A. (2001) Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes, Oangmuir 17, 1367–1371.CrossRefGoogle Scholar
  70. 70.
    Kitamoto, D., Yanagishita, H., Haraya, K., and Kitamoto, H.K. (1998) Contribution of a Chain-Shortening Pathway to the Biosynthesis of the Fatty Acids of Mannosylerythritol Lipid (Biosurfactant) in the Yeast Candida antarctica: Effect of β-Oxidation Inhibitors on Biosurfactant Synthesis, Biotechnol. Lett. 20, 813–818.CrossRefGoogle Scholar
  71. 71.
    Kitamoto, D., Sangita, G., Ourisson, G., and Nakatani, Y. (2000) Formation of Giant Vesicles from Diacylmannosylerythritols, and Their Binding to Concanavalin A, Chem. Commun., 861–862.Google Scholar
  72. 72.
    Wakamatsu, Y., Zhao, X., Jin, C., Day, N., Shibahara, M., Nomura, N., Nakahara, T., Murata, T., and Yokoyama, K.K. (2001) Mannosylerythritol Lipid Induces Characteristics of Neuronal Differentiation in PC12 Cells Through an ERK-Related Signal Cascade, Eur. J. Biochem. 268, 374–383.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhao, X., Wakamatsu, Y., Shibahara, M., Nomura, N., Geltinger, C., Nakahara, T., Murata, T., and Yokoyama, K.K. (1999) Mannosylerythritol Lipid Is a Potent Inducer of Apoptosis and Differentiation of Mouse Melanoma Cells in Culture, Cancer Res. 59, 482–486.PubMedGoogle Scholar
  74. 74.
    Kitamoto, D., Yanagishita, H., Endo, A., Nakaiwa, M., Nakane, T., and Akiya, T. (2001) Remarkable Antiagglomeration Effect of a Yeast Biosurfactant, Diacylmannosylerythritol, on Ice-Water Slurry for Cold Thermal Storage, Biotechnol. Prog. 17, 362–365.PubMedCrossRefGoogle Scholar
  75. 75.
    Cameotra, S.S., and Makkar, R.S. (2004) Recent Applications of Biosurfactants as Biological and Immunological Molecules, Curr. Opin. Microbiol. 7, 262–266.PubMedCrossRefGoogle Scholar
  76. 76.(a)
    Kitamoto, D., Ikegami, T., Suzuki, G.T., Sasaki, A., Takeyama, Y.I., Idemoto, Y., Koura, N., and Yanagishita, H. (2001) Microbial Conversion of n-Alkanes into Glycolipid Biosurfactants, Mannosylerythritol Lipids by Pseudozyma (Candida anteractica), Biotechnol. Lett. 23, 1709–1714; (b) Umehara, K., Nemoto, K., Ohkubo, T., Miyase, T., Degawa, M., and Noguchi, H. (2004) Isolation of a New 15-Membered Macrocyclic Glycolipid Lactone. Cuscutic Resinoside A from the Seeds of Cuscuta chinensis: A Stimulator of Breast Cancer Cell Proliferation, Planta Med. 70, 299–304.CrossRefGoogle Scholar
  77. 77.
    Asselineau, C., and Asselineau, J. (1978) Trehalose-Containing Glycolipids, Prog. Chem. Fats Other Lipids 16, 59–99.PubMedCrossRefGoogle Scholar
  78. 78.
    Vilkas, E., and Rojas, A. (1964) On the Lipids of Mycobacterium fortuitum, Bull. Soc. Chim. Biol. 46, 689–701.PubMedGoogle Scholar
  79. 79.(a)
    Azuma, I., and Yamamura, Y.J. (1962) Studies on the Firmly Bound Lipids of Human Tubercle bacillus. I. Isolation of Arabinose Mycolate, Biochemistry (Tokyo) 52, 200–206; (b) Vilkas, E., Adam, A., and Senn, M. (1968) Isolation of a New Type of Trehalose Diester from Mycobacterium fortuitum, Chem. Phys. Lipids 2, 11–16.Google Scholar
  80. 80.(a)
    Prottey, C., and Ballou, C.E. (1968) Diacyl Myoinositol Monomannoside from Propionibacterium shermanii, J. Biol. Chem. 243, 6196–6201; (b) Shaw, N., and Dinglinger, F. (1969) The Structure of an Acylated Inositol Mannoside in the Lipids of Propionic Acid Bacteria, Biochem. J. 112, 769–775.PubMedGoogle Scholar
  81. 81.
    Noll, H., Bloch, H., Asselineau, J., and Lederer, E. (1956) The Chemical Structure of the Cord Factor of Mycobacterium tuberculosis, Biochim. Biophys. Acta 20, 299–309.PubMedCrossRefGoogle Scholar
  82. 82.
    Asselineau, J., and Lederer, E. (1955) Constitution of the Cord Factor Isolated from a Human Strain of Mycobacterium tuberculosis, Biochim. Biophys. Acta 17, 161–168.PubMedCrossRefGoogle Scholar
  83. 83.
    Asselineau, C., Montrozier, H., Prome, J.C., Savagnac, A., and Welby, M. (1972) Polyunsaturated Glycolipids Synthesized by Mycobacterium phlei, Eur. J. Biochem. 28, 102–109.PubMedCrossRefGoogle Scholar
  84. 84.
    Goren, M.B. (1970) Sulfolipid I of Mycobacterium tuberculosis, Strain H37Rv: I. Purification and Properties, Biochim. Biophys. Acta 210, 116–126.PubMedGoogle Scholar
  85. 85.
    Goren, M.B. (1970) Sulfolipid I of Mycobacterium tuberculosis, Strain H37Rv: II. Structural Studies, Biochim. Biophys. Acta 210, 127–138.PubMedGoogle Scholar
  86. 86.
    Esch, S.W., Morton, M.D., Williams, T.D., and Buller, C.S. (1999) A Novel Trisaccharide Glycolipid Biosurfactant Containing Trehalose Bears Ester-Linked Hexanoate, Succinate, and Acyloxyacyl Moieties: NMR and MS Characterization of the Underivatized Structure, Carbohydr. Res. 319, 112–123.PubMedCrossRefGoogle Scholar
  87. 87.
    Mayorga, H., Duqur, C., Knapp, H., and Winterhalter, P. (2002) Hydroxyester Dissaccharides from Fruits of Cape Gooseberry (Physalis peruviana) Phytochemistry 59, 439–445.PubMedCrossRefGoogle Scholar
  88. 88.
    Mayorga, H., Knapp, H., Winterhalter, P., and Duque, C. (2001) Glycosidically Bound Flavor Compounds of Cape Gooseberry (Physalis peruviana L.), J. Agric. Food Chem. 49, 1904–1908.PubMedCrossRefGoogle Scholar
  89. 89.
    Batrakov, S.G., Konova, I.V., Sheichenko, V.I., and Galanina, L.A. (2003) Glycolipids of the Filamentous Fungus Absidia corymbifera F-295, Chem. Phys. Lipids 123, 157–164.PubMedCrossRefGoogle Scholar
  90. 90.
    Tulloch, A.P. (1964) The Component Fatty Acids of Oils Found in Spores of Plant Rusts and Other Fungi. IV, Can. J. Microbiol. 10, 359–364.PubMedCrossRefGoogle Scholar
  91. 91.
    Davila, A.M., Marchal, R., Monin, N., and Vandecasteele, J.P. (1993) Identification and Determination of Individual Sophorolipids in Fermentation Products by Gradient Elution High-Performance Liquid Chromatography with Evaporative Light-Scattering Detection, J. Chromatogr. 648, 139–149.PubMedCrossRefGoogle Scholar
  92. 92.
    Tulloch, A.P., and Spencer, J.F. (1972) Formation of a Long-Chain Alcohol Ester of Hydroxy Fatty Acid Sophoroside by Fermentation of Fatty Alcohol by a Torulopis Species, J. Org. Chem. 37, 2868–2870.PubMedCrossRefGoogle Scholar
  93. 93.
    Spencer, J.F., Gorin, P.A., and Tulloch, A.P. (1970) Torulopsis bombicola sp. N, Antonie Van Leeuwenhoek. 36, 129–133.PubMedCrossRefGoogle Scholar
  94. 94.
    Rau, U., Hammen, S., Heckmann, R., Wray, V., and Lang, S. (2001) Sophorolipids: A Source for Novel Compounds, Ind. Crops Prod. 13, 85–92.CrossRefGoogle Scholar
  95. 95.
    Hommel, R.K., Weber, L., Weiss, A., Himelreich, U., Rilke, O., and Kleber, H.P. (1994) Production of Sophorose Lipid by Canadida (Torulopsis) apicola Grown on Glucose, J. Biotechnol. 33, 147–155.CrossRefGoogle Scholar
  96. 96.
    Weber, L., Stach, J., Haufe, G., Hommel, R., and Kleber, H.-P. (1990) Structure Elucidation of an Unusual Glycolipid by Two-Dimensional N.M.R. Methods, J. Mol. Struct. 219, 353–358.CrossRefGoogle Scholar
  97. 97.
    Cooper, D.G. (1986) Biosurfactants, Microbiol. Sci. 3, 145–149.PubMedGoogle Scholar
  98. 98.
    Otto, R.T., Daniel, H.J., Pekin, G., Muller-Decker, K., Furstenberger, G., Reuss, M., and Syldatk, C. (1999) Production of Sophorolipids from Whey. II. Product Composition, Surface Active Properties, Cytotoxicity and Stability Against Hydrolases by Enzymatic Treatment, Appl. Microbiol. Biotechnol. 52, 495–501.PubMedCrossRefGoogle Scholar
  99. 99.
    Desai, J.D., and Banat, I.M. (1997) Microbial Production of Surfactants and Their Commercial Potential, Microbiol. Mol. Biol. Rev. 61, 47–64.PubMedGoogle Scholar
  100. 100.
    Vollbrecht, E., Rau, U., and Lang, S. (1999) Microbial Conversion of Vegetable Oils into Surface-Active Di-, Tri-, and Tetrasaccharide Lipids (Biosurfactants) by the Bacterial Strain Tsukamurella spec., Fett/Lipid 101, 389–394.CrossRefGoogle Scholar
  101. 101.
    Levand, O., and Larson, H. (1979) Some Chemical Constituents of Morinda citrifolia, Plant Med. 36, 186–187.CrossRefGoogle Scholar
  102. 102.
    Hirazumi, A., Furusawa, E., Chou, S.C., and Hokama, Y. (1994) Anticancer Activity of Morinda citrifolia (noni) on Intraperitoneally Implanted Lewis Lung Carcinoma in Syngeneic Mice, Proc. West. Pharmacol. Soc. 37, 145–146.PubMedGoogle Scholar
  103. 103.
    Hirazumi, A., Furusawa, E., Chou, S.C., and Hokama, Y. (1996) Immunomodulation Contributes to the Anticancer Activity of Morinda citrifolia (noni) Fruit Juice, Proc. West. Pharmacol. Soc. 39, 7–9.PubMedGoogle Scholar
  104. 104.
    Wang, M., Kikuzaki, H., Jin, Y., Nakatani, N., Zhu, N., Csisar, K., Boyd, C., Rosen, R., Ghal, G., and Ho, C.T. (2000) Novel Glycosides from Noni (Morinda citrifolia), J. Nat. Prod. 63, 1182–1183.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee, J., and Hollingsworth, R.I. (1996) Isolation and Characterization of a β-1-O-Acyl-β-1,2-diglucosyl Glycoside from the Membranes of a Gram Positive Bacterium Sarcina ventriculi, Tetrahedron 52, 3873–3878.CrossRefGoogle Scholar
  106. 106.
    Perda-Miranda, R., and Hernandez-Carlos, B. (2002) HPLC Isolation and Structural Elucidation of Diastereomeric Niloyl Ester Tetrasaccharides from Mexican Scammony Root, Tetrahedron 58, 3145–3154.CrossRefGoogle Scholar
  107. 107.
    Gasper, E.M.M. (1999) New Pentasaccharide Macrolactone from the European Convolvulaceae Calystegia soldanella, Tetrahedron Lett. 40, 6861–6864.CrossRefGoogle Scholar
  108. 108.
    Font Quer, P. (1962) Plantas Medicinales, Labor, S.A. (ed.), El Dioscorides Renovado, Madrid, p. 543.Google Scholar
  109. 109.
    MacLeod, J.K., Ward, A., and Oelrichs, P.B. (1997) Structural Investigation of Resin Glycosides from Ipomoea lonchophylla, J. Nat. Prod. 60, 467–471.PubMedCrossRefGoogle Scholar
  110. 110.
    Heacock, R.A. (1975) Psychotomimetics of the Convolvulaceae, Prog. Med. Chem., 11, 91–118.PubMedCrossRefGoogle Scholar
  111. 111.
    Bieber, L.W., Da Silva, F., Correa Lima, R.M.O., De Andrade Chiappeta, A., Do Naschimento, S.C., De Souza, I.A., De Mello, J.F., and Veith, H.J. (1986) Anticancer and Antimicrobial Glycosides from Ipomoea bahiensis, Phytochemistry 25, 1077–1081.CrossRefGoogle Scholar
  112. 112.
    Du, X.M., Sun, N.S., Nishi, M., Lawasaki, T., Guo, Y.T., and Miyahara, K. (1999) Components of the Ether-Insoluble Resin Glycoside Fraction from the Seed of Cuscuta australis, J. Nat. Prod. 62, 722–723.PubMedCrossRefGoogle Scholar
  113. 113.
    Noda, N., Takahashi N., Miyahara, K., and Yang, C.R. (1998) Stoloniferins VIII–XII, Resin Glycosides, from Ipomoea stolonifera, Phytochemistry 48, 837–841.PubMedCrossRefGoogle Scholar
  114. 114.
    MacLeod, J.K., and Ward, A. (1997) Structural Investigation of Resin Glycosides from Ipomoea lonchophylla, J. Nat. Prod. 60, 467–471.PubMedCrossRefGoogle Scholar
  115. 115.
    Barnes, C.C., Smalley, M.K., Manfredi, K.P., Kindscher, K., Loring, H., and Sheeley, D.M. (2003) Characterization of an Anti-Tuberculosis Resin Glycoside from the Prairie Medicinal Plant Ipomoea leptophylla, J. Nat. Prod. 66, 1457–1462.PubMedGoogle Scholar
  116. 116.
    Rezanka, T., and Guschina, I.A. (2001) Glycoside Esters from Lichens of Central Asia, Phytochemistry 58, 509–516.PubMedCrossRefGoogle Scholar
  117. 117.
    Rezanka, T., and Guschina, I.A. (2000) Glycosidic Compounds of Murolic, Protoconstipatic and Allo-murolic Acids from Lichens of Central Asia, Phytochemistry 54, 635–645.PubMedCrossRefGoogle Scholar
  118. 118.
    Vulfson, E.N. (1992) Enzymatic Synthesis of Surfactans, in Tyman, J.H.P. (ed.), Surfactants in Lipid Chemistry: Recent Synthetic, Physical, and Biodegradative Studies, Royal Society of Chemistry, London, pp. 17–37.Google Scholar
  119. 119.
    Kikuchi, H., Saito, Y., Komiya, J., Takaya, Y., Honma, S., Nakahata, N., Ito, A., and Oshima, Y. (2001) Furanodictine A and B: Amino Sugar Analogues Produced by Cellular Slime Mold Dictyostelium discoideum Showing Neuronal Differentiation Activity, J. Org. Chem. 66, 6982–6987.PubMedCrossRefGoogle Scholar
  120. 120.
    Milkereit, G., Morr, M., Thiem, J., and Vill, V. (2004) Thermotropic and Lyotropic Properties of Long Chain Alkyl Glycopyranosides: Part III: pH-Sensitive Headgroups, Chem. Phys. Lipids 127, 47–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Gradzielski, M. (2004) Vesicle Gels—Phase Behaviour and Process of Formation, Curr. Opin. Colloid Interface Sci. 9, 149–153.CrossRefGoogle Scholar
  122. 122.
    Platz, G., Polike, J., and Thunig, C. (1995) Phase Behavior, Lyotropic Phases, and Flow Properties of Alkyl Glycosides in Aqueous Solution, Langmuir 11, 4250–4255.CrossRefGoogle Scholar
  123. 123.
    Hoffmann, B., and Platz, G. (2001) Phase and Aggregation Behaviour of Alkylglycosides, Curr. Opin. Colloid Interface Sci. 6, 171–177.CrossRefGoogle Scholar
  124. 124.
    Kaneko, T., Ohtani, K., Kasai, R., Yamasaki, K., and Duc, N.M. (1998) n-Alkyl Glycosides and p-Hydroxybenzoyloxy Glucose from Fruits of Crescentia cujete, Phytochemistry 47, 259–263.CrossRefGoogle Scholar
  125. 125.
    Boulanger, R., and Crouzet, J. (2001) Identification of the Aroma Components of Acerola (Malphigia glabra L.): Free and Bound Flavour Compounds, Food Chem. 74, 209–216.CrossRefGoogle Scholar
  126. 126.
    Milos, M., Mastelic, J., and Jerkovic, I. (2000) Chemical Composition and Antioxidant Effect of Glycosidically Bound Volatile Compounds from Oregano (Origanum vulgare L. ssp. hirtum), Food Chem. 71, 79–83.CrossRefGoogle Scholar
  127. 127.
    De Rosa, S., De Giulio, A., and Tommonaro, G. (1996) Aliphatic and Aromatic Glycosides from the Cell Cultures of Lycopersicon esculentum, Phytochemistry 42, 1031–1034.PubMedCrossRefGoogle Scholar
  128. 128.
    Takayanagi, T., Ishikawa, T., and Kitajima, J. (2003) Sesquiterpene Lactone Glucosides and Alkyl Glycosides from the Fruit of Cumin, Phytochemistry 63, 479–484.PubMedGoogle Scholar
  129. 129.
    Ono, M., Yoshida, A., Ito, Y., and Nohara, T. (1999) Phenethyl Alcohol Glycosides and Isopentenol Glycoside from Fruit of Bupleurum falcatum Phytochemistry 51, 819–823.PubMedCrossRefGoogle Scholar
  130. 130.
    Çalis, I., and Kirmizibekmez, H. (2004) Glycosides from Phlomis lunariifolia, Phytochemistry 65, 2619–2625.PubMedCrossRefGoogle Scholar
  131. 131.
    Tanahashi, T., Shimada, A., Kai, M., Nagakura, N., Inoue, K., and Chen, C.C. (1996) An Iridoid Glucoside from Jasminum hemsleyi, J. Nat. Prod. 59, 798–800.PubMedCrossRefGoogle Scholar
  132. 132.
    Messanga, B.B., fon Kimbu, S., Sondengam B.L., and Bodo, B. (2001) Two New Fatty Acid Glucosides from the Root Bark of Ochna calodendron, Fitoterapia 72, 732–736.PubMedCrossRefGoogle Scholar
  133. 133.
    Simko, I., Omer, E.A., Ewing, E.E., McMurry, S., Koch, J.L., and Davies, P.J. (1996) Tuberonic (12-OH-jasmonic) Acid Glucoside and Its Methyl Ester in Potato, Phytochemistry 43, 727–730.CrossRefGoogle Scholar
  134. 134.
    Gambacorta, A., Soriente, A., Trincone, A., and Sodano, G. (1995) Biosynthesis of the Heterocyst Glycolipids in the Cyanobacterium Anabaena cylindrica, Phytochemistry 39, 771–774.CrossRefGoogle Scholar
  135. 135.
    Lambein, F., and Wolk, C.P. (1973) Structural Studies on the Glycolipids from the Envelope of the Heterocyst of Anabaena cylindrica, Biochemistry 12, 791–798.PubMedCrossRefGoogle Scholar
  136. 136.
    Adams, D.G., and Duggan, P.S. (1999) Tansley Review No. 107. Heterocyst and Akinete Differentiation in Cyanobacteria, New Phytol. 144, 3–33.CrossRefGoogle Scholar
  137. 137.
    Soriente, A., Bisogno, T., Gambacorta, A., Romano, I., Sili, C., Trincone, A., and Sodano, G. (1995) Reinvestigation of Heterocyst Glycolipids from the Cyanobacterium, Anabaena cylindrica, Phytochemistry 38, 641–645.CrossRefGoogle Scholar
  138. 138.
    Voutquenne, L., Lavaud, C., Massiot, G., Sevenet, T., and Hadi, H.A., (1999) Cytotoxic Polyisoprenes and Glycosides of Long-Chain Fatty Alcohols from Dimocarpus fumatus, Phytochemistry 50, 63–69.PubMedCrossRefGoogle Scholar
  139. 139.
    Linington, R.G., Robertson, M., Gauthier, A., Finlay, B.B., van Soes R., and Andersen, R.J. (2002) Caminoside A, an Antimicrobial Glycolipid Isolated from the Marine Sponge Caminus sphaeroconia, Org. Lett. 4, 4089–4092.PubMedCrossRefGoogle Scholar
  140. 140.
    Wu, J., Zhang, S., Xiao Q., Li, Q., Huang, J., Long, L., and Huang, L. (2003) Phenylethanoid and Aliphatic Alcohol Glycosides from Acanthus ilicifolius, Phytochemistry 63, 491–495.PubMedGoogle Scholar
  141. 141.
    Babu, B.H., Shylesh, B.S., and Padikkala, J. (2001) Antioxidant and Hepatoprotective Effect of Acanthus ilicifolius, Fitoterapia 72, 272–277.PubMedCrossRefGoogle Scholar
  142. 142.
    Babu, B.H., Shylesh, B.S., and Padikkala, J. (2002) Tumour Reducing and Anticarcinogenic Activity of Acanthus ilicifolius in Mice, J. Ethnopharmacol. 79, 27–33.PubMedCrossRefGoogle Scholar
  143. 143.
    Kanchanapoom, T., Kasai, R., Picheansoonthon, C., and Yamasaki, K. (2001) Megastigmane, Aliphatic Alcohol and Benzoxazinoid Glycosides from Acanthus ebracteatus, Phytochemistry 58, 811–817.PubMedCrossRefGoogle Scholar
  144. 144.
    Wu, J., Zhang, S., Huang, J., Xiao, Q., Li, Q., Long, L., and Huang, L. (2003) New Aliphatic Alcohol and (Z)-4-Coumaric Acid Glycosides from Acanthus ilicifolius, Chem. Pharm. Bull. 51, 1201–1203.PubMedCrossRefGoogle Scholar
  145. 145.
    Kanchanapoom, T., Ruchirawat, S., Kasai, R., and Otsuka, H. (2004) Aliphatic Alcohol and Iridoid Glycosides from Asystasia intrusa, Chem. Pharm. Bull. 52, 980–982.PubMedCrossRefGoogle Scholar
  146. 146.
    Yamamura, S., Ozawa, K., Ohtani, K., Kasai, R., and Yamasaki, K. (1998) Antihistaminic Flavones and Aliphatic Glycosides from Mentha spicata, Phytochemistry 48, 131–136.CrossRefGoogle Scholar
  147. 147.
    Kanchanapoom, T., Kasai, R., and Yamasaki, K. (2001) Iridoid Glucosides from Barleria lupulina, Phytochemistry 58, 337–341.PubMedCrossRefGoogle Scholar
  148. 148.
    Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M., and Ianaro, A. (1999) Glycolipids from Sponges: VII. Simplexides, Novel Immunosuppressive Glycolipids from the Caribbean Sponge Plakortis simplex, Bioorg. Med. Chem. Lett. 9, 271–276.PubMedCrossRefGoogle Scholar
  149. 149.
    Gunstone, F.D., Harwood, J.L., and Padley, F.B. (1994) The Lipid Handbook, pp. 39–54, Chapman & Hall, London.Google Scholar
  150. 150.
    Costantino, V., Fattorusso, E., and Mangoni, A. (2000) Glycolipids from Sponges. Part 9: Plakoside C and D, Two Further Prenylated Glycosphingolipids from the Marine Sponge Ectyoplasia ferox, Tetrahedron 56, 5953–5957CrossRefGoogle Scholar
  151. 151.
    Costantino, V., Fattorusso, E., Imperatore, C., and Mangoni, A. (2001) Plaxyloside from the Marine Sponge Plakortis simplex: An Improved Strategy for NMR Structural Studies of Carbohydrate Chains, Eur. J. Org. Chem. 23, 4457–4462.CrossRefGoogle Scholar
  152. 152.
    Rezanka, T., and Dvoráková, R. (2003) Polypropionate Lactones of Deoxysugars Glycosides from Slime Mold, Lycogala epidendrum, Phytochemistry 63, 945–952.CrossRefGoogle Scholar
  153. 153.
    Tabata, N., Ohyama, Y., Tomoda, H., Abe, T., Namikoshi, M., and Omura, S. (1999) Structure Elucidation of Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliocladium roseum KF-1040, J. Antibiot. 52, 815–822.PubMedGoogle Scholar
  154. 154.
    Tomoda, H., Ohyama, Y., Abe, T., Tabata, N., Namikoshi, M., Yamaguchi, Y., Masuma, R., and Omura, S. (1999) Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliocladium roseum KF-1040. Production, Isolation and Biological Properties, J. Antibiot. 52, 689–704.PubMedGoogle Scholar
  155. 155.
    Tabata, N., Ohyama, Y., Tomoda, H., Abe, T., Namikoshi, M., and Omura, S. (1999) Structure Elucidation of Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliocladium roseum KF-1040, J. Antibiot. 52, 815–826.PubMedGoogle Scholar
  156. 156.
    Liu, H., Orjala, J., Rali, T., and Sticher, O. (1998) Glycosides from Stenochlaena palustris, Phytochemistry 49, 2403–2408.CrossRefGoogle Scholar
  157. 157.
    Thomas, B.V., Schreiber, A.A., and Weisskopf, C.P. (1988) Simple Method for Quantitation of Capsaicinoids in Pepper Using Capillary Gas Chromatography, J. Agric. Food Chem. 46, 2655–2663.CrossRefGoogle Scholar
  158. 158.
    Iorizzi, M., Lanzotti, V., De Marino, S., Zollo, F., Blanco-Molina, M., Macho, A., and Munoz, E. (2001) New Glycosides from Capsicum annuum L. var. acuminatum. Isolation, Structure Determination, and Biological Activity, J. Agric. Food Chem. 49, 2022–2029.PubMedCrossRefGoogle Scholar
  159. 159.
    Izumitani, Y., Yahara, S., and Nohara, T. (1990) Novel Acyclic Diterpene Glycosides, Capsianosides-A-F and Capsianosides-I-V from Capsicum Plants—Solanaceous Studies, Chem. Pharm. Bull. 38, 1299–1307.Google Scholar
  160. 160.
    Yahara, S., Kobayashi, N., Izumitani, Y., and Nohara, T. (1991) Studies on the Solanaceous Plants: 23. New Acyclic Diterpene Glycosides, Capsianoside-VI, Capsianoside-G and Capsianoside-H from the Leaves and Stems of Capsicum annuum L., Chem. Pharm. Bull. 39, 3258–3260.Google Scholar
  161. 161.
    Shimizu, M. (1999) Modulation of Intestinal Functions by Food Substances, Nahrung/Food 43, 154–158.CrossRefGoogle Scholar
  162. 162.
    Kim, Y.C., and Kingston, D.G.I. (1996) A New Caprylic Alcohol Glycoside from Circaea lutetiana ssp. canadensis, J. Nat. Prod. 59, 1096–1098.CrossRefGoogle Scholar
  163. 163.
    Ling, S.-K., Tanaka, T., and Kouno, I. (2002) New Cyanogenic and Alkyl Glycoside Constituents from Phyllagathis rotundifolia, J. Nat. Prod. 65, 131–135.PubMedCrossRefGoogle Scholar
  164. 164.
    Costantino, V., Fattorusso, E., Mangoni, A., Aknin, M., Fall, A., Samb, A., and Miralles, J. (1993) An Unusual Ether Glycolipid from the Senegalese Sponge Trikentrion loeve Carter, Tetrahedron 49, 2711–2716.CrossRefGoogle Scholar
  165. 165.
    Costantino, V., Fattorusso, E., and Mangoni, A. (1993) Isolation of Five-Membered Cyclitol Glycolipids, Crasserides: Unique Glycerides from the Sponge Pseudoceratina crassa, J. Org. Chem. 58, 186–191.CrossRefGoogle Scholar
  166. 166.
    Wang, N.L., Yao, X.S., Ishii, R., and Kitanaka, S. (2001) Antiallergic Agents from Natural Sources: 3. Structures and Inhibitory Effects on Nitric Oxide Production and Histamine Release of Five Novel Polyacetylene Glucosides from Bidens parviflora WILLD, Chem. Pharm. Bull. 49, 938–942.PubMedCrossRefGoogle Scholar
  167. 167.
    Ubillas, R.P., Mendez, C.D., Jolad, S.D., Luo, J., King, S.R., Carlson, T.J., and Fort, D.M. (2000) Antihyperglycemic Acetylenic Glucosides from Bidens pilosa, Planta Med. 66, 82–83.PubMedGoogle Scholar
  168. 168.
    Mateo, J.J., and Jimenez, M. (2000) Monoterpenes in Grape Juice and Wines, J. Chromatogr. A881, 557–567.PubMedCrossRefGoogle Scholar
  169. 169.
    Mateo, J.J., Gentilini, N., Huerta, T., Jimnez, M., and Di Stefano, R. (1997) Fractionation of Glycoside Precursors of Aroma in Grapes and Wine, J. Chromatogr. A 778, 219–224.PubMedCrossRefGoogle Scholar
  170. 170.
    Schneider, R., Charrier, F., Moutounet, M., and Baumes, R. (2004) Rapid Analysis of Grape Aroma Glycoconjugates Using Fourier-Transform Intrared Spectrometry and Chemometric Techniques, Anal. Chim. Acta 513, 91–96.CrossRefGoogle Scholar
  171. 171.
    Ayestarán, B., Guadalupe, Z., and León, D. (2004) Quantification of Major Grape Polysaccharides (Tempranillo v.) Released by Maceration Enzymes During the Fermentation Process, Anal. Chim. Acta 513, 29–39.CrossRefGoogle Scholar
  172. 172.
    Williams, P.J., Strauss, C.R., Wilson, B., and Massywestropp, R.A. (1982) Novel Monoterpene Disaccharide Glycosides of Vitis vinifera Grapes and Wines, Phytochemistry 21, 2013–2020.CrossRefGoogle Scholar
  173. 173.
    Sarry, J.-E., and Günata, Z. (2004) Plant and Microbial Glycoside Hydrolases: Volatile Release from Glycosidic Aroma Precursors, Food Chem. 87, 509–521.CrossRefGoogle Scholar
  174. 174.
    D'Incecco, N., Bartowsky, E., Kassara, S., Lante, A., Spettoli, P., and Henschke, P. (2004) Release of Glycosidically Bound Flavour Compounds of Chardonnay by Oenococcus oeni During Malolactic Fermentation, Food Microbiol. 21, 257–265.CrossRefGoogle Scholar
  175. 175.
    Whitehurst, R.J. (ed.) (2004) Emulsifiers in Food Technology. Blackwell Publ., Ames, Iowa, p. 264.Google Scholar
  176. 176.
    De Roode B.M., Franssen, A.C.R., Van Der Padt, A., Boom, R.M. (2003) Perspectives for the Industrial Enzymatic Production of Glycosides, Biotechnol. Prog. 19, 1391–1402.PubMedCrossRefGoogle Scholar
  177. 177.
    Zhang, Q.S., Guo, B.N., and Zhang, H.M. (2004) Development and Application of Gemini Surfactants, Prog. Chem. 16, 343–348.Google Scholar
  178. 178.
    Hait, S.K., and Moulik, S.P. (2002) Gemini Surfactants: A Distinct Class of Self-Assembling Molecules, Curr. Sci. 82, 1101–1111.Google Scholar

Copyright information

© AOCS Press 2004

Authors and Affiliations

  1. 1.School of PharmacyHebrew UniversityJerusalemIsrael
  2. 2.Department of Organic ChemistryHebrew UniversityJerusalemIsrael

Personalised recommendations