, Volume 39, Issue 6, pp 527–535 | Cite as

Dietary intakes and food sources of n−6 and n−3 PUFA in french adult men and women

  • Pierre Astorg
  • Nathalie Arnault
  • Sébastien Czernichow
  • Nathalie Noisette
  • Pilar Galan
  • Serge Hercberg


The intake of individual n−6 and n−3 PUFA has been estimated in 4,884 adult subjects (2,099 men and 2,785 women), volunteers from the French SU.VI.MAX intervention trial. The food intakes of each subject were recorded in at least ten 24-h record questionnaires completed over a period of 2.5 yr, allowing the estimation of the daily intake of energy; total fat; and linoleic, α-linolenic, arachidonic, eicosapentaenoic (EPA), n−3 docosapentaenoic (DPA), and docosahexaenoic (DHA) acids. The mean total fat intake corresponded to 94.1 g/d (36.3% of total energy intake) in men and 73.4 g/d (38.1% of energy) in women. The intake of linoleic acid was 10.6 g/d in men and 8.1 g/d in women, representing 4.2% of energy intake; that of α-linolenic acid was 0.94 g/d in men and 0.74 g/d in women, representing 0.37% of energy intake, with a mean linoleic/α-linolenic acid ratio of 11.3. The mean intakes of long-chain PUFA were: arachidonic acid, 204 mg/d in men and 152 mg/d in women; EPA, 150 mg/d in men and 118 mg/d in women; DPA, 75 mg/d in men and 56 mg/d in women; DHA, 273 mg/d in men and 226 mg/d in women; long-chain n−3 PUFA, 497 mg/d in men and 400 mg/d in women. Ninety-five percent of the sample consumed less than 0.5% of energy as α-linolenic acid, which is well below the current French recommendation for adults (0.8% of energy). In contrast, the mean intakes of long-chain n−6 and n−3 PUFA appear fairly high and fit the current French recommendations (total long-chain PUFA: 500 mg/d in men and 400 mg/d in women; DHA: 120 mg/d in men and 100 mg/d in women). The intakes of α-linolenic acid, and to a lesser extent of linoleic acid, were highly correlated with that of lipids. Whereas the main source of linoleic acid was vegetable oils, all food types contributed to α-linolenic acid intake, the main ones being animal products (meat, poultry, and dairy products). The main source of EPA and DHA (and of total long-chain n−3 PUFA) was fish and seafood, but the major source of DPA was meat, poultry, and eggs. Fish and seafood consumption showed very large interindividual variations, the low consumers being at risk of insufficient n−3 PUFA intake.



docosahexaenoic acid


n−3 docosapentaenoic acid


essential fatty acids


eicosapentaenoic acid


polyunsaturated FA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carroll, D.N., and Roth, M.T. (2002) Evidence for Cardioprotective Effects of Omega-3 Fatty Acids, Ann. Pharmacother. 36, 1950–1956.PubMedCrossRefGoogle Scholar
  2. 2.
    Simopoulos, A.P. (2002) The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids, Biomed. Pharmacother. 56, 365–379.PubMedCrossRefGoogle Scholar
  3. 3.
    Kris-Etherton, P.M., Shaffer Taylor, D., and Yu-Poth, S. (2000) Polyunsaturated Fatty Acids in the Food Chain in the United States, Am. J. Clin. Nutr. 71, 179S-189S.PubMedGoogle Scholar
  4. 4.
    Sanders, T.A.B. (2000) Polyunsaturated Fatty Acids in the Food Chain in Europe, Am. J. Clin. Nutr. 71, 176S-178S.PubMedGoogle Scholar
  5. 5.
    Legrand, P., Bourre, J.M., Descomps, B., Durand, G., and Renaud, S. (2001) Lipides, in Apports nutritionnels conseillés pour la population françaide, 3rd edn. (Martin, A., ed.), pp. 63–82, Tec & Doc, Paris.Google Scholar
  6. 6.
    Simopoulos, A.P., Leaf, A., and Salem, N., Jr. (1999) Workshop on the Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids, J. Am. Coll. Nutr. 18, 487–489.PubMedGoogle Scholar
  7. 7.
    Combe, N., and Boué, C. (2001) Apports alimentaires en acides linoléique et alpha-linolénique d'une population d'Aquitaine, Oléag. Corps Gras Lipides 8, 118–121.Google Scholar
  8. 8.
    Knutsen, S.F., Fraser, G.E., Beeson, W.L., Lindsted, K.D., and Shavlik, D.J. (2003) Comparison of Adipose Tissue Fatty Acids with Dietary Fatty Acids as Measured by 24-Hour Recall and Food Frequency Questionnaire in Black and White Adventists: the Adventist Health Study, Ann. Epidemiol. 13, 119–127.PubMedCrossRefGoogle Scholar
  9. 9.
    Okita, M., Yoshida, S., Yamamoto, J. Suzuki, K., Kaneyuki, T., Kubota, M., and Sasagawa, T. (1995) n−3 and n−6 Fatty Acid Intake and Serum Phospholipid Fatty Acid Composition in Middle-Aged Women Living in Rural and Urban Areas in Okayama Prefecture, J. Nutr. Sci. Vitaminol. (Tokyo) 41, 313–323.Google Scholar
  10. 10.
    Kobayashi, M., Sasaki, S., Kawabata, T., Hasegawa, K., and Tsugane, S. (2003) Validity of a Self-Administered Food Frequency Questionnaire Used in the 5-Year Follow-up Survey of the JPHC Study Cohort I to Assess Fatty Acid Intake: Comparison with Dietary Records and Serum Phospholipid Level, J. Epidemiol. 13, S64-S81.PubMedGoogle Scholar
  11. 11.
    De Vriese, S.R., De Henauw, S., De Backer, G., Dhont, M., and Christophe, A.B. (2001) Estimation of Dietary Fat Intake of Belgian Pregnant Women. Comparison of Two Methods, Ann. Nutr. Metab. 45, 273–278.PubMedCrossRefGoogle Scholar
  12. 12.
    Linseisen, J., Schulze, M.B., Saadatian-Elahi, M., Kroke, A., Miller, A.B., and Boeing, H. (2003) Quantity and Quality of Dietary Fat, Carbohydrate, and Fiber Intake in the German EPIC Cohorts, Ann. Nutr. Metab. 47, 37–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Innis, S.M., and Elias, S.L. (2003) Intakes of Essential n−6 and n−3 Polyunsaturated Fatty Acids Among Pregnant Canadian Women, Am. J. Clin. Nutr. 77, 473–478.PubMedGoogle Scholar
  14. 14.
    Johansson, L.R., Solvoll, K., Bjorneboe, G.E., and Drevon, C.A. (1998) Intake of Very-Long-Chain n−3 Fatty Acids Related to Social Status and Lifestyle, Eur. J. Clin. Nutr. 52, 716–721.PubMedCrossRefGoogle Scholar
  15. 15.
    Meyer, B.J., Mann, N.J., Lewis, J.L., Milligan, G.C., Sinclair, A.J., and Howe, P.R. (2003) Dietary Intakes and Food Sources of Omega-6 and Omega-3 Polyunsaturated Fatty Acids, Lipids 38, 391–398.PubMedGoogle Scholar
  16. 16.
    Hercberg, S., Preziosi, P., Briancon, S., Galan, P., Triol, I., Malvy, D., Roussel, A.M., and Favier, A. (1998) A Primary Prevention Trial Using Nutritional Doses of Antioxidant Vitamins and Minerals in Cardiovascular Diseases and Cancers in a General Population: The SU.VI.MAX Study—Design, Methods, and Participant Characteristics. SUpplementation en VItamines et Mineraux AntioXydants, Control Clin. Trials 19, 336–351.PubMedCrossRefGoogle Scholar
  17. 17.
    Le Moullec, N., Deheeger, M., Preziosi, P., Monteiro, P., Valeix, P., Rolland-Cachera, M.-F., Potier de Courcy, G., Christidès, J.-P., Cherouvrier, F., Galan, P., and Hercberg, S. (1996) Validation du manuel-photos utilisé pour l'enquête alimentaire de l'étude SU.VI.MAX, Cah. Nutr. Diét. 31, 158–164.Google Scholar
  18. 18.
    Mennen, L.I., Bertrais, S., Galan, P., Arnault, N., Potier de Courcy, G., and Hercberg, S. (2004) The Use of Computerised 24 h Dietary Recalls in the French SU.VI.MAX Study: Number of Recalls Required, Eur. J. Clin. Nutr. 56, 659–665.CrossRefGoogle Scholar
  19. 19.
    Hercberg, S. (2004) Table de composition des aliments SUVI-MAX, Editions INSERM, Paris, in press (the part of the table dealing with total fat and n−6 and n−3 PUFA can be obtained from P. Astorg on request, in the form of an Excel file).Google Scholar
  20. 20.
    Favier, J.C., Ireland-Ripert, J., Toque, C., and Feinberg, M. (1995) Répertoire général des aliments, table de composition, 2nd edn., Tec & Doc, Paris.Google Scholar
  21. 21.
    Ireland, J., Favier, J.C., and Feinberg, M. (2002) Répertoire général des aliments. Tome 2: Produits laitiers, Tec & Doc, Paris.Google Scholar
  22. 22.
    U.S. Department of Agriculture (USDA), Agricultural Research Service, USDA National Nutrient Database for Standard Reference, Release 16, 2003. Netlink: (accessed March–June 2003).Google Scholar
  23. 23.
    Ministry of Agriculture, Fisheries and Food, (2004) Fatty Acids. Supplement to McCance & Widdowson's The Composition of Foods, Royal Society of Chemistry, Cambridge.Google Scholar
  24. 24.
    Ma, J., Folsom, A.R., Shahar, E., and Eckfeldt, J.H., and the Atherosclerosis Risk in Communities (ARIC) Study Investigators (1995) Plasma Fatty Acid Composition as an Indicator of Habitual Dietary Fat Intake in Middle-Aged Adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators, Am. J. Clin. Nutr. 62, 564–571.PubMedGoogle Scholar
  25. 25.
    Ollis, T.E., Meyer, B.J., and Howe, P.R. (1999) Australian Food Sources and Intakes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids, Ann. Nutr. Metab 43, 346–355.PubMedCrossRefGoogle Scholar
  26. 26.
    Tokudome, Y., Imaeda, N., Ikeda, M., Kitagawa, I., Fujiwara, N., and Tokudome, S. (1999) Foods Contributing to Absolute Intake and Variance in Intake of Fat, Fatty Acids and Cholesterol in Middle-Aged Japanese, J. Epidemiol. 9, 78–90.PubMedGoogle Scholar
  27. 27.
    Voskuil, D.W., Feskens, E.J., Katan, M.B., and Kromhout, D. (1996) Intake and Sources of α-Linolenic Acid in Dutch Elderly Men, Eur. J. Clin. Nutr. 50, 784–787.PubMedGoogle Scholar
  28. 28.
    Hulshof, K.F.A.M., van Erp-Baart, M.A., Anttolainen, M., Becker, W., Church, S.M., Couet, C., Herrmann-Kunz, E., Kesteloot, H., Leth, T., and Martins, I. (1999) Intake of Fatty Acids in Western Europe with Emphasis on trans Fatty Acids: The TRANSFAIR Study, Eur. J. Clin. Nutr. 53, 143–157.PubMedCrossRefGoogle Scholar
  29. 29.
    Sugano, M. (1996) Characteristics of Fats in Japanese Diets and Current Recommendations, Lipids 31, S283-S286.PubMedGoogle Scholar
  30. 30.
    Sugano, M., and Hirahara, F. (2000) Polyunsaturated Fatty Acids in the Food Chain in Japan, Am. J. Clin. Nutr. 71, 189S-196S.PubMedGoogle Scholar
  31. 31.
    Tokudome, Y., Kuriki, K., Imaeda, N., Ikeda, M., Nagaya, T., Fujiwara, N., Sato, J., Goto, C., Kikuchi, S., Maki, S., and Tokudome, S. (2003) Seasonal Variation in Consumption and Plasma Concentrations of Fatty Acids in Japanese Female Dietitians, Eur. J. Epidemiol. 18, 945–953.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuriki, K., Nagaya, T., Topkudome, Y., Imaeda, N., Fujiwara, N., Sato, J., Goto, C., Ikeda, M., Maki, S., Tajima, K., and Tokudome, S. (2003) Plasma Concentrations of (n−3) Highly Unsaturated Fatty Acids Are Good Biomarkers of Relative Dietary Fatty Acid Intakes: A Cross-Sectional Study, J. Nutr. 133, 3643–3650.PubMedGoogle Scholar
  33. 33.
    Linseisen, J., Bergstrom, E., Gafa, L., Gonzalez, C.A., Thiebaut, A., Trichopoulou, A., Tumino, R., Navarro, S.C., Martinez, G.C., Mattisson, I., et al. (2002) Consumption of Added Fats and Oils in the European Prospective Investigation into Cancer and Nutrition (EPIC) Centres Across 10 European Countries as Assessed by 24-Hour Dietary Recalls, Public Health Nutr. 5, 1227–1242.PubMedCrossRefGoogle Scholar
  34. 34.
    Amiano, P., Dorronsoro, M., de Renobales, M., Ruiz de Gordoa, J.C., Irigoyen, I., and and the EPIC Group of Spain (2001) Very-Long-Chain Omega-3 Fatty Acids as Markers for Habitual Fish Intake in a Population Consuming Mainly Lean Fish: The EPIC Cohort of Gipuzkoa, Eur. J. Clin. Nutr. 55, 827–832.PubMedCrossRefGoogle Scholar
  35. 35.
    Mann, N.J., Johnson, L.G., Warrick, G.E., and Sinclair, A.J. (1995) The Arachidonic Acid Content of the Australian Diet Is Lower than Previously Estimated, J. Nutr. 125, 2528–2535.PubMedGoogle Scholar
  36. 36.
    Li, D., Zhang, H., Hsu-Hage, B.H., Wahlqvist, M.L., and Sinclair, A.J. (2001) The Influence of Fish, Meat and Polyunsaturated Fat Intakes on Platelet Phospholipid Polyunsaturated Fatty Acids in Male Melbourne Chinese and Caucasian, Eur. J. Clin. Nutr. 55, 1036–1042.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, D., Ng, A., Mann, N.J., and Sinclair, A.J. (1998) Contribution of Meat Fat to Dietary Arachidonic Acid, Lipids 33, 437–440.PubMedCrossRefGoogle Scholar
  38. 38.
    Welch, A., Lund, E., Amiano, P., Dorronsoro, M., Brustad, M., Kumle, M., Rodriguez, M., Lasheras, C., Janzon, N., Jansson, J., and Luben, R. (2002) Variability of Fish Consumption Within the 10 European Countries Participating in the European Investigation into Cancer and Nutrition (EPIC) Study, Public Health Nutr. 5, 1273–1285.PubMedCrossRefGoogle Scholar
  39. 39.
    Brenna, J.T. (2002) Efficiency of Conversion of α-Linolenic to Long-Chain n−3 Fatty Acids in Man, Curr. Opin. Clin. Nutr. Metab. Care 5, 127–132.PubMedCrossRefGoogle Scholar
  40. 40.
    Pawlosky, R.J., Hibbeln, J.R., Lin, Y., Goodson, S., Riggs, P., Sebring, N., Brown, G.L., and Salem, N., Jr. (2003) Effects of Beef- and Fish-Based Diets on the Kinetics of n−3 Fatty Acid Metabolism in Human Subjects, Am. J. Clin. Nutr. 77, 565–572.PubMedGoogle Scholar
  41. 41.
    Sinclair, A.J., Attar-Bashi, A.M., and Li, D. (2002) What Is the Role of α-Linolenic Acid for Mammals?, Lipids 37, 1113–1123.PubMedGoogle Scholar

Copyright information

© AOCS Press 2004

Authors and Affiliations

  • Pierre Astorg
    • 1
  • Nathalie Arnault
    • 1
  • Sébastien Czernichow
    • 1
  • Nathalie Noisette
    • 1
  • Pilar Galan
    • 1
  • Serge Hercberg
    • 1
  1. 1.UMR INSERM 557/INRA/CNAM Epidémiologie Nutritionnelle, Institut Scientifique et Technique de la Nutrition et de l'Alimentation (ISTNA)Conservatoire National des Arts et Métiers (CNAM)ParisFrance

Personalised recommendations