Lipids

, Volume 38, Issue 4, pp 445–452 | Cite as

The structure of DHA in phospholipid membranes

  • Klaus Gawrisch
  • Nadukkudy V. Eldho
  • Laura L. Holte
Articles

Abstract

Early experiments and molecular simulations of PUFA favored a rigid arrangement of double bonds in U-shaped or extended conformations such as angle-iron or helical. Although results of recent solid-state NMR measurements and molecular simulations have confirmed the existence of these structural motifs, they portray an image of DHA (22∶6n−3) as a highly flexible molecule with rapid transitions between large numbers of conformers on the time scale from picoseconds to hundreds of nanoseconds. The low barriers to torsional rotation about C-C bonds that link the cis-locked double bonds with the methylene carbons between them are responsible for this unusual flexibility. Both the amplitude and frequency of motion increase toward the terminal methyl group of DHA.

Abbreviations

16∶0–22∶6n−3PC

1-palmitoyl-2-docosahexanoyl-sn-glycero-3-phosphocholine

18∶0–22∶6n−3PC

1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

DHA

docosahexaenoic acid (22∶6n−3)

DPH

1,6-diphenyl-1,3,5-hexatriene

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gallinella, E., and Cadioli, B. (1975) Rotational Isomerism and Structure of Penta-1,4-diene: Raman Spectrum and ab initio Calculations, J. Chem. Soc., Faraday Trans. 271, 781–786.Google Scholar
  2. 2.
    Applegate, K.R., and Glomset, J.A. (1986) Computer-Based Modeling of the Conformation and Packing Properties of Docosahexaenoic Acid, Lipid Res. 27, 658–680.Google Scholar
  3. 3.
    Applegate, K.R., and Glomset, J.A. (1991) Effect of Acyl Chain Unsaturation on the Conformation of Model Diacylglycerols: A Computer Modeling Study, J. Lipid Res. 32, 1635–1644.PubMedGoogle Scholar
  4. 4.
    Applegate, K.R., and Glomset, J.A. (1991) Effect of Acyl Chain Unsaturation on the Packing of Model Diacylglycerols in Simulated Monolayers, J. Lipid Res. 32, 1645–1655.PubMedGoogle Scholar
  5. 5.
    Rabinovich, A.L., and Ripatti, P.O. (1991) On the Conformational, Physical Properties and Functions of Polyunsaturated Acyl Chains, Biochim. Biophys. Acta. 1085, 53–62.PubMedGoogle Scholar
  6. 6.
    Koenig, B.W., Strey, H.H., and Gawrisch, K. (1997) Membrane Lateral Compressibility Determined By NMR and X-ray Diffraction: Effect of Acyl Chain Polyunsaturation, Biophys. J. 73, 1954–1966.PubMedGoogle Scholar
  7. 7.
    Eldho, N.V., Feller, S.E., Tristram-Nagle, S., Polozov, I., and Gawrisch, K. (2002) Polyunsaturated Docosahexaenoic vs. Docosapentaenoic Acid—Differences in Lipid Matrix Properties from the Loss of One Double Bond, J. Am. Chem. Soc. (in press).Google Scholar
  8. 8.
    Feller, S.E., Gawrisch, K., and MacKerell, A.D. (2002) Polyunsaturated Fatty Acids in Lipid Bilayers: Intrinsic and Environmental Contributions to Their Unique Physical Properties, J. Am. Chem. Soc. 124, 318–326.CrossRefPubMedGoogle Scholar
  9. 9.
    Saiz, L., and Klein, M.L. (2001) Structural Properties of a Highly Polyunsaturated Lipid Bilayer from Molecular Dynamics Simulations, Biophys. J. 81, 204–216.PubMedGoogle Scholar
  10. 10.
    Huber, T., Rajamoorthi, K., Kurze, V.F., Beyer, K., and Brown, M.F. (2002) Structure of Docosahexaenoic Acid-Containing Phospholipid Bilayers as Studied by 2H NMR and Molecular Dynamics Simulations, J. Am. Chem. Soc. 124, 298–309.CrossRefPubMedGoogle Scholar
  11. 11.
    Everts, S., and Davis, J.H. (2000) 1H and 13C NMR of Multilamellar Dispersions of Polyunsaturated (22∶6) Phospholipids, Biophys. J. 79, 885–897.PubMedGoogle Scholar
  12. 12.
    Demel, R.A., van Kessel, W.S.M.G., and van Deenen, L.L.M. (1971) The Properties of Polyunsaturated Lecithins in Monolayers and Liposomes and the Interactions of These Lecithins with Cholesterol, Biochim. Biophys. Acta 266, 26–40.Google Scholar
  13. 13.
    Evans, R.W., Williams, M.A., and Tinoco, J. (1987) Surface Areas of 1-Palmitoyl Phosphatidylcholines and Their Interactions with Cholesterol, Biochem. J. 245, 455–462.PubMedGoogle Scholar
  14. 14.
    Coolbear, K.P., Berde, C.B., and Keough, K.M. (1983) Gel to Liquid-Crystalline Phase Transitions of Aqueous Dispersions of Polyunsaturated Mixed-Acid Phosphatidylcholines, Biochemistry 22, 1466–1473.CrossRefPubMedGoogle Scholar
  15. 15.
    Niebylski, C.D., and Salem, N., Jr. (1994) A Calorimetric Investigation of a Series of Mixed-Chain Polyunsaturated Phosphatidylcholines: Effect of sn-2 Chain Length and Degree of Unsaturation, Biophys. J. 67, 2387–2393.PubMedGoogle Scholar
  16. 16.
    Salem, N., Jr., Serpentino, P., Puskin, J.S., and Abood, L.G. (1980) Preparation and Spectroscopic Characterization of Molecular Species of Brain Phosphatidylserines, Chem. Phys. Lipids 27, 289–304.CrossRefPubMedGoogle Scholar
  17. 17.
    Stubbs, C.D., Kouyama, T., Kinosita, K., Jr., and Ikegami, A. (1981) Effect of Double Bonds on the Dynamic Properties of the Hydrocarbon Region of Lecithin Bilayers, Biochemistry 20, 4257–4262.CrossRefPubMedGoogle Scholar
  18. 18.
    Straume, M., and Litman, B.J. (1987) Equilibrium and Dynamic Structure of Large, Unilamellar, Unsaturated Acyl Chain Phosphatidylcholine Vesicles. Higher Order Analysis of 1,6-Diphenyl-1,3,5-hexatriene and 1-[4 (Trimethylammonio)-phenyl]-6-phenyl-1,3,5-hexatriene Anisotropy Decay, Biochemistry 26, 5113–5120.CrossRefPubMedGoogle Scholar
  19. 19.
    Mitchell, D.C., and Litman, B.J. (1998) Effect of Cholesterol on Molecular Order and Dynamics in Highly Polyunsaturated Phospholipid Bilayers, Biophys. J. 75, 896–908.PubMedGoogle Scholar
  20. 20.
    Paddy, M.R., Dahlquist, F.W., Dratz, E.A., and Deese, A.J. (1985) Simultaneous Observation of Order and Dynamics at Several Defined Positions in a Single Acyl Chain Using 2H NMR of Single Acyl Chain Perdeuterated Phosphatidylcholines, Biochemistry 24, 5988–5995.CrossRefPubMedGoogle Scholar
  21. 21.
    Salmon, A., Dodd, S.W., Williams, G.D., Beach, J.M., and Brown, M.F. (1987) Configurational Statistics of Acyl Chains in Polyunsaturated Lipid Bilayers from H-2 NMR, J. Am. Chem. Soc. 109, 2600–2609.CrossRefGoogle Scholar
  22. 22.
    Holte, L.L., Peter, S.A., Sinnwell, T.M., and Gawrisch, K. (1995) 2H Nuclear Magnetic Resonance Order Parameter Profiles Suggest a Change of Molecular Shape for Phosphatidylcholines Containing a Polyunsaturated Acyl Chain, Biophys. J. 68, 2396–2403.PubMedGoogle Scholar
  23. 23.
    Huster, D., Arnold, K., and Gawrisch, K. (1998) Influence of Docosahexaenoic Acid and Cholesterol on Lateral Lipid Organization in Phospholipid Mixtures, Biochemistry 37, 17299–17308.CrossRefPubMedGoogle Scholar
  24. 24.
    Stubbs, C.D., and Smith, A.D. (1984) The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function, Biochim. Biophys. Acta 779, 89–137.PubMedGoogle Scholar
  25. 25.
    Stubbs, C.D. (1992) The Structure and Function of Docosahexaenoic Acid in Membranes, in The Third International Congress on Essential Fatty Acids and Eicosanoids (Sinclair, A., and Gibson, R., eds.), pp. 116–121, American Oil Chemists' Society, Champaign.Google Scholar
  26. 26.
    Applegate, K.R., and Glomset, J.A. (1986) Computer-Based Modeling of the Conformation and Packing Properties of Docosahexaenoic Acid, J. Lipid Res. 27, 658–680.PubMedGoogle Scholar
  27. 27.
    Vandenheuvel, F.A. (1963) Study of Biological Structure at the Molecular Level with Stereomodel Projections I. The Lipids in the Myelin Sheath of Nerve, J. Am. Oil Chem. Soc. 40, 455–471.Google Scholar
  28. 28.
    Rich, M.R. (1993) Conformational Analysis of Arachidonic and Related Fatty Acids Using Molecular Dynamics Simulations, Biochim. Biophys. Acta 1178, 87–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Rosenberg, A. (1967) Euglena gracilis: A Novel Lipid Energy Reserve and Arachidonic Acid Enrichment During Fasting, Science 157, 1189–1191.CrossRefPubMedGoogle Scholar
  30. 30.
    Ernst, J., Sheldrick, W.S., and Fuhrhop, J.H. (1979) Die Strukturen der essentiellen ungesättigen Fettsäuren, Kristallstruktur der Linolsäure sowie Hinweise auf die Kristallstrukturen der α-Linolensäure und der Arachidonsäure, Z. Naturforsch. 34B, 706–711.Google Scholar
  31. 31.
    Applegate, K.R. and Glomset, J.A. (1986) Computer-Based Modeling of the Conformation and Packing Properties of Docosahexaenoic Acid, J. Lipid Res. 27, 658–680.PubMedGoogle Scholar
  32. 32.
    Applegate, K.R., and Glomset, J.A. (1986) Computer-Based Modeling of the Conformation and Packing Properties of Docosahexaenoic Acid, J. Lipid Res. 27, 658–680.PubMedGoogle Scholar
  33. 33.
    Albrand, M., Pageaux, J.F., Lagarde, M., and Dolmazon, R. (1994) Conformational Analysis of Isolated Docosahexaenoic Acid (22∶6n−3) and Its 14-(s) and 11-(s) Hydroxy Derivatives by Force-Field Calculations, Chem. Phys. Lipids 72, 7–17.CrossRefGoogle Scholar
  34. 34.
    Seelig, A., and Seelig, J. (1977) Effect of a Single cis Double Bond on the Structures of a Phospholipid Bilayer, Biochemistry 16, 45–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Seelig, J., and Waespe-Sarcevic, N. (1978) Molecular Order in cis and trans Unsaturated Phospholipid Bilayers, Biochemistry 17, 3310–3315.CrossRefPubMedGoogle Scholar
  36. 36.
    Baenziger, J.E., Jarrell, H.C., Hill, R.J., and Smith, I.C. (1991) Average Structural and Motional Properties of a Diunsaturated Acyl Chain in a Lipid Bilayer: Effects of two cis-Unsaturated Double Bonds, Biochemistry 30, 894–903.CrossRefPubMedGoogle Scholar
  37. 37.
    Baenziger, J.E., Jarrell, H.C., and Smith, I.C. (1992) Molecular Motions and Dynamics of a Diunsaturated Acyl Chain in a Lipid Bilayer: Implications for the Role of Polyunsaturation in Biological Membranes, Biochemistry 31, 3377–3385.CrossRefPubMedGoogle Scholar
  38. 38.
    Rajamoorthi, K., and Brown, M.F. (1991) Bilayers of Arachidonic Acid Containing Phospholipids Studied by 2H and 31P NMR Spectroscopy, Biochemistry 30, 4204–4212.CrossRefPubMedGoogle Scholar
  39. 39.
    Dratz, E.A., and Deese, A.J. (1986) The Role of Docosahexaenoic Acid in Biological Membranes: Examples from Photoreceptors and Model Membrane Bilayers, in Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopolous, A.P., Kifer, R.R., and Martin, R.E., eds.), pp. 319–351, Academic Press, New York.Google Scholar
  40. 40.
    Huber, T., Rajamoorthi, K., Kurze, V.F., Beyer, K., and Brown, M.F. (2002) Structure of Docosahexaenoic Acid-Containing Phospholipid Bilayers as Studied by 2H NMR and Molecular Dynamics Simulations, J. Am. Chem. Soc. 124, 298–309.CrossRefPubMedGoogle Scholar
  41. 41.
    Saiz, L., and Klein, M.L. (2001) Influence of Highly Polyunsaturated Lipid Acyl Chains of Biomembranes on the NMR Order Parameters, J. Am. Chem. Soc. 123, 7381–7387.CrossRefPubMedGoogle Scholar
  42. 42.
    Saiz, L., and Klein, M.L. (2001) Structural Properties of a Highly Polyunsaturated Lipid Bilayer from Molecular Dynamics Simulations, Biophys. J. 81, 204–216.PubMedGoogle Scholar
  43. 43.
    Koenig, B.W., Strey, H.H., and Gawrish, K. (1997) Membrane Lateral Compressibility Determined By NMR and X-ray Diffraction: Effect of Acyl Chain Polyunsaturation, Biophys. J. 73, 1954–1966.PubMedGoogle Scholar
  44. 44.
    Huster, D., Arnold, K., and Gawrisch, K. (1998) Influence of Docosahexaenoic Acid and Chelesterol on Lateral Lipid Organization in Phospholipid Mixtures, Biochemistry 37, 17299–17308.CrossRefPubMedGoogle Scholar
  45. 45.
    Huster, D., Arnold, K., and Gawrisch, K. (2000) Strength of Ca2+ Binding to Retinal Lipid Membranes: Consequences for Lipid Organization, Biophys. J. 78, 3011–3018.PubMedGoogle Scholar
  46. 46.
    Gawrisch, K., Eldho, N.V., Mathews, J.S., and Lindsay, C.C. (2002) The Order Parameter Profile of Docosahexaenoic Acid in 18∶0–22∶6(d31) PC, Biophys. J. 82, 13.Google Scholar
  47. 47.
    Holte, L.L., Peter, S.A., Sinnwell, T.M., and Gawrisch, K. (1995) 2H Nuclear Magnetic Resonance Order Parameter Profiles Suggest a Change of Molecular Shape for Phosphatidylcholines Containing a Polyunsaturated Acyl Chain, Biophys. J. 68, 2396–2403.PubMedGoogle Scholar
  48. 48.
    Separovic, F., and Gawrisch, K. (1996) The Effect of Unsaturation on Chain Order of Phosphatidylcholines in a DOPE Matrix, Biophys. J. 71, 274–282.PubMedGoogle Scholar
  49. 49.
    Binder, H., and Gawrisch, K. (2001) Dehydration Induces Lateral Expansion of Polyunsaturated 18∶0–22∶6 Phosphatidylcholine in a New Lamellar Phase, Biophys. J. 81, 969–982.PubMedGoogle Scholar
  50. 50.
    Binder, H., and Gawrisch, K. (2001) Effect of Unsaturated Lipid Chains on Dimensions, Molecular Order and Hydration of Membranes, J. Phys. Chem. B 105, 12378–12390.CrossRefGoogle Scholar
  51. 51.
    Dratz, E.A., and Holte, L.L. (1992) The “Molecular Spring” Model for the Function of 22∶6ω−3 in Biological Membranes, in Essential Fatty Acids and Eicosanoids: Invited Papers from the Third International Congress (Sinclair, A.F., and Gibson, R.A., eds.), pp. 122–127, American Oil Chemists' Society, Champaign.Google Scholar
  52. 52.
    Brown, M.F. (1994) Modulation of Rhodopsin Function by Properties of the Membrane Bilayer, Chem. Phys. Lipids 73, 159–180.CrossRefPubMedGoogle Scholar
  53. 53.
    Cantor, R.S. (1999) Lipid Composition and the Lateral Pressure Profile in Bilayers, Biophys. J. 76, 2625–2639.PubMedCrossRefGoogle Scholar
  54. 54.
    Gawrisch, K., and Holte, L.L. (1996) NMR Investigations of Non-lamellar Phase Promoters in the Lamellar Phase State, Chem. Phys. Lipids 81, 105–116.CrossRefGoogle Scholar
  55. 55.
    de Urquiza, A.M., Liu, S.Y., Sjoberg, M., Zetterstrom, R.H., Griffiths, W., Sjovall, J., and Perlmann, T. (2000) Docosahexaenoic Acid, a Ligand for the Retinoid X Receptor in Mouse Brain, Science 290, 2140–2144.CrossRefPubMedGoogle Scholar
  56. 56.
    Malkowski, M.G., Ginell, S.L., Smith, W.L., and Garavito, R.M. (2000) The Productive Conformation of Arachidonic Acid Bound to Prostaglandin Synthase, Science 289, 1933–1937.CrossRefPubMedGoogle Scholar
  57. 57.
    Balendiran, G.K., Schnutgen, F., Scapin, G., Borchers, T., Xhong, N., Lim, K., Godbout, R., Spener, F., and Sacchettini, J.C. (2000) Crystal Structure and Thermodynamic Analysis of Human Brain Fatty Acid-Binding Protein, J. Biol. Chem. 275, 27045–27054.PubMedGoogle Scholar

Copyright information

© AOCS Press 2003

Authors and Affiliations

  • Klaus Gawrisch
    • 1
  • Nadukkudy V. Eldho
    • 1
  • Laura L. Holte
    • 1
  1. 1.Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockville

Personalised recommendations