Lipids

, Volume 36, Issue 9, pp 1025–1032

Polyunsaturated fatty acids and T-cell function: Implications for the neonate

  • Catherine J. Field
  • M. Thomas Clandinin
  • John E. Van Aerde
Article

Abstract

Infant survival depends on the ability to respond effectively and appropriately to environmental challenges. Infants are born with a degree of immunological immaturity that renders them susceptible to infection and abnormal dietary responses (allergies). T-lymphocyte function is poorly developed at birth. The reduced ability of infants to respond to mitogens may be the result, of the low number of CD45RO+ (memory/antigen-primed). T cells in the infant or the limited ability to produce cytokines [particularly interferon-γ, interleukin (IL)-4, and IL-10]. There have been many important changes in optimizing breast milk substitutes for infants; however, few have been directed at replacing factors in breast milk that convey immune benefits. Recent research has been directed at the neurological, retinal, and membrane benefits of adding 20∶4n−6 (arachidonic acid; AA) and 22∶6n−3 (docosahexaenoic acid; DHA) to infant formula. In addults and animals, feeding DHA affects T-cell function. However, the effect of these lipids on the development and function of the infant's immune system is not known. We recently reported the effect of adding DHA+AA to a standard infant formula on several functional indices of immune development. Compared with standard formula, feeding a formula containing DHA+AA increased the proporition of antigen mature (CD45RO+) CD4+ cells, improved IL-10 production, and reduced IL-2 production to levels not different from those of human milk-fed infants. This review will briefly describe T-cell development and the potential immune effect of feeding long-chain polyunsaturated fatty acids to the neonate.

Abbreviations

AA

arachidonic acid

DHA

docosahe xaenoic acid

EPA

eicosapentaenoic acid

IFN

interferon

IL

interleukin

MHC

major histocompatibility complex

NK

natural killer

PHA

phytohemagglutinin

PUFA

polyunsaturated fatty acids

sIL-2R

secretory IL-2 receptor

Th

helper T cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crockett, M. (1995) Physiology of the Neonatal Immune System, J. Obstet. Gynecol. Neonatal Nurs. 24, 627–634.PubMedCrossRefGoogle Scholar
  2. 2.
    Kovarik, J., and Siegrist, C.-A. (1998) Immunity in Early Life, Immunol. Today 19, 150–152.PubMedCrossRefGoogle Scholar
  3. 3.
    Mannick, E., and Udall, J.N., Jr. (1996) Neonatal Gastrointestinal Mucosal Immunity, Clin. Perinatol. 23, 287–304.PubMedGoogle Scholar
  4. 4.
    Wolach, B., Carmi, D., Gilboa, S., Satar, M., Segal, S., Dolfin, T., and Schlesinger, M. (1994) Some Aspects of the Humoral Immunity and the Phagocytic Function in Newborn Infants, Isr. J. Med. Sci. 30, 331–335.PubMedGoogle Scholar
  5. 5.
    Ferrante, A., Carman, K., Nandoskar, M., McPhee, A., and Poulos, A. (1996) Corl Blood Neutrophil Responses to Polyunsaturated Fatty Acids: Effects on Degranulation and Oxidative Respiratory Burst, Biol. Neonate 69, 368–375.PubMedGoogle Scholar
  6. 6.
    Roberts, R.L., Ank, B.J., and Stiehm, E.R. (1994) Antiviral Properties of Neonatal and Adult Human Neutrophils, Pediatr. Res. 36, 792–798.PubMedGoogle Scholar
  7. 7.
    Durandy, A., De Saint Basile, G., Lisowska-Grospierre, B., Gauchat, J.F., Forveille, M., Kroczek, R.A., Bonnefoy, J.Y., and Fischer, A. (1995) Undetectable CD40 Ligand Expression on T Cells and Low B Cell Responses to CD40 Binding Agonists in Human Newborns, J. Immunol. 154, 1560–1568.PubMedGoogle Scholar
  8. 8.
    Hassan, J., and Reen, D.J. (1996) Reduced Primary Antigen-Specific T-Cell Precursor Frequencies in Neonates Is Associated with Deficient Interleukin-2 Production, Immunology 87, 604–608.PubMedCrossRefGoogle Scholar
  9. 9.
    von Freeden U., Zessack, N., van Valen, F., and Burdach, S. (1991) Defective Interferon Gamma Production in Neonatal T Cells Is Independent of Interleukin-2 Receptor Binding, Pediatr. Res. 30, 270–275.Google Scholar
  10. 10.
    De Waele, M., Foulon, W., Renmans, W., Segers, E., Smet, L., Jochmans, K., and Van Camp, B. (1988) Hematologic Values and Lymphocyte Subsets in Fetal Blood, Am. J. Clin. Pathol. 89, 742–746.PubMedGoogle Scholar
  11. 11.
    Alam, R. (1998) A Brief Review of the Immune System, Prim. Care Clin. Office Pract. 25, 727–738.CrossRefGoogle Scholar
  12. 12.
    Fleisher, T.A. (1997) Immune Function, Pediatr. Rev. 18, 351–356.PubMedGoogle Scholar
  13. 13.
    Roper, R.L., and Phipps, R.P. (1994) Prostaglandin E2 Regulation of the Immune Response, Adv. Prostaglandin Thromboxane Leukot. Res. 22, 101–111.PubMedGoogle Scholar
  14. 14.
    Brenner, I., Shek, P.N., Zamecnik, J., and Shephard, R.J. (1998) Stress Hormones and the Immunological Responses to Heat and Exercise, Int. J. Sport Med. 19, 130–143.Google Scholar
  15. 15.
    Mosmann, T.R., and Sad, S. (1996) The Expanding Universe of T-Cell Subsets: Th1, Th2 and More, Immunol. Today 17, 138–146.PubMedCrossRefGoogle Scholar
  16. 16.
    Mosmann, T.R., and Moore, K.W. (1991) The Role of IL-10 in Crossregulation of TH1 and TH2 Responses, Immunol. Today 12, A49-A53.PubMedCrossRefGoogle Scholar
  17. 17.
    Romagnani, S. (1995) Biology of Human TH1 and TH2 Cells, J. Clin. Immunol. 15, 121–129.PubMedCrossRefGoogle Scholar
  18. 18.
    MacDonald, T.T. (1998) T Cell Immunity to Oral Allergens, Curr. Opin. Immunol. 10, 620–627.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A., and Weiner, H.L. (1994) Regulatory T Cell Clones Induced by Oral Tolerance: Suppression of Autoimmune Encephalomyelitis, Science 265, 1237–1240.PubMedCrossRefGoogle Scholar
  20. 20.
    Carter, L.L., and Dutton, R.W. (1996) Type 1 and Type 2: A Fundamental Dichotomy for All T-Cell Subsets, Curr. Opin. Immunol. 8, 336–342.PubMedCrossRefGoogle Scholar
  21. 21.
    Brandtzaeg, P., Halstensen, T.S., Kett, K., Krajci, P., Kvale, D., Rognum, T.O., Scott, H., and Sollid, L.M. (1989) Immunobiology and Immunopathology of Human Gut Mucosa: Humoral Immunity and Intraepithelial Lymphocytes, Gastroenterology 97, 1562–1584.PubMedGoogle Scholar
  22. 22.
    Insoft, R.M., Sanderson, I.R., and Walker, W.A. (1996) Development of Immune Function in the Intestine and Its Role in Neonatal Diseases, Pediatr. Clin. North Am. 43, 551–571.PubMedCrossRefGoogle Scholar
  23. 23.
    Cunningham-Rundles, S., and Lin, D.H. (1998) Nutrition and the Immune System of the Gut, Nutrition 14, 573–579.PubMedCrossRefGoogle Scholar
  24. 24.
    Holt, P.G. (1993) Regulation of Antigen-Presenting Cell Function(s) in Lung and Airway Tissues, Eur. Respir. J. 6, 120–129.PubMedGoogle Scholar
  25. 25.
    Lopez-Alarcon, M., Villalpando, S., and Fajardo, A. (1997) Breast-Feeding Lowers the Frequency and Duration of Acute Respiratory Infection and Diarrhea in Infants Under Six Months of Age, J. Nutr. 127, 436–443.PubMedGoogle Scholar
  26. 26.
    Abraham, R., and Ogra, P.L. (1994) Mucosal Microenvironment and Mucosal Response, Am. J. Trop. Med. Hyg. 50, 3–9.PubMedGoogle Scholar
  27. 27.
    de Vries, E., de Groot, R., de Bruin-Versteeg, S., Comans-Bitter, W.M., and van Dongen, J.J.M. (1999) Analysing the Developing Lymphocyte System of Neonates and Infants, Eur. J. Pediatr. 158, 611–617.PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas, R.M., and Linch, D.C. (1983) Identification of Lymphocyte Subsets in the Newborn Using a Variety of Monoclonal Antibodies, Arch. Dis. Child. 58, 34–38.PubMedGoogle Scholar
  29. 29.
    Comans-Bitter, W.M., de Groot, R., van den Beemd, R., Neijens, H.J., Hop, W.C.J., Groeneveld, K., Hooijkass, H., and van Dongen, J.J.M. (1997) Immunophenotyping of Blood Lymphocytes in Childhood, J. Pediatr. 130, 388–393.PubMedCrossRefGoogle Scholar
  30. 30.
    Erkeller-Yuksel, F.M., Deneys, V., Yuksel, B., Hannet, I., Hulstaert, F., Hamilton, C., Mackinnon, H., Stokes, L.T., Munhyeshuli, V., and Vanlangendonck, F. (1992) Age-Related Changes in Human Blood Lymphocyte Subpopulations, J. Pediatr. 120, 216–222.PubMedCrossRefGoogle Scholar
  31. 31.
    Vigano, A., Esposito, S., Arienti, D., Zagliani, A., Massironi, E., Principi, N., and Clerici, M. (1999) Differential Development of Type 1 and Type 2 Cytokines and Beta-Chemokines in the Ontogeny of Healthy Newborns, Biol. Neonate 75, 1–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Aldhous, M.C., Raab, G.M. Doherty, K.V., Mok, J.Y., Bird, A.G., and Froebel, K.S. (1994) Age-Related Ranges of Memory, Activation, and Cytotoxic Markers on CD4 and CD8 Cells in Children, J. Clin. Immunol. 14, 289–298.PubMedCrossRefGoogle Scholar
  33. 33.
    Field, C.J., Thomson, C.A., Van Aerde, J.E., Parrot, A., Euler, A., Lien, E.L., and Clandinin, M.T. (2000) The Lower Proportion of CD45RO+ Cells and Deficient IL-10 Production by Formula-Fed Infants, Compared to Human-Fed, Is Corrected with Supplementation of Long Chain-Polyunsaturated Fatty Acids, J. Pediatr. Gastroenterol. Nutr. 31, 291–299.PubMedCrossRefGoogle Scholar
  34. 34.
    Bruning, T., Daiminger, A., and Enders, G. (1997) Diagnostic Value of CD45RO Expression on Circulating T Lymphocytes of Fetuses and Newborn Infants with Pre-, Peri- or Early Post-Natal Infections, Clin. Exp. Immunol. 107, 306–311.PubMedCrossRefGoogle Scholar
  35. 35.
    Clement, L.T. (1992) Isoforms of the CD45 Common Leukocyte Antigen Family: Markers for Human T-Cell Differentiation, J. Clin. Immunol. 12, 1–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Anonymous (2000) Longitudinal Survey of Lymphocyte Subpopulations in the First Year of Life, Pediatr. Res. 47, 528–537.Google Scholar
  37. 37.
    de Vries, E., de Bruin-Versteeg, S., Comans-Bitter, W.M., de Groot, R., Hop, W.C.J., Boerma, G.J.M., Lotgering, F.K., Sauer, P.J.J., and van Dongen, J.J.M. (2000) Neonatal Blood Lymphocyte Subpopulations: A Different Perspective When Using Absolute Counts, Biol. Neonate 77, 230–235.PubMedCrossRefGoogle Scholar
  38. 38.
    Calado, R.T., Garcia, A.B., and Falcao, R.P. (1999) Age-Related Changes of Immunophenotypically Immature Lymphocytes in Normal Human Peripheral Blood, Cytometry 38, 133–137.PubMedCrossRefGoogle Scholar
  39. 39.
    Maccario, R., Chirico, G., Mingrat, G., Arico, M., Lanfranchi, A., Montagna, D., Moretta, A., and Rondini, G. (1993) Expression of CD45R0 Antigen on the Surface of Resting and Activated Neonatal T Lymphocyte Subsets, Biol. Neonate 64, 346–353.PubMedCrossRefGoogle Scholar
  40. 40.
    Lewis, D.B., Yu, C.C., Meyer, J., English, B.K., Kahn, S.J., and Wilson, C.B. (1991) Cellular and Molecular Mechanisms for Reduced Interleukin 4 and Interferon-Gamma Production by Neonatal T Cells, J. Clin. Invest. 87, 194–202.PubMedGoogle Scholar
  41. 41.
    Wilson, C.B., Penix, L., Weaver, W.M., Melvin, A., and Lewis, D.B. (1992) Ontogeny of T Lymphocyte Function in the Neonate, Am. J. Reprod. Immunol. 28, 132–135.PubMedGoogle Scholar
  42. 42.
    Beverley, P.C. (1990) Is T-Cell Memory Maintained by Cross-reactive Stimulation?, Immunol. Today 11, 203–205.PubMedCrossRefGoogle Scholar
  43. 43.
    Bradley, L.M., Bradley, J.S., Ching, D.L., and Shiigi, S.M. (1989) Predominance of T Cells That Express CD45R in the CD4+ Helper/Inducer Lymphocyte Subset of Neonates, Clin. Immunol. Immunopathol. 51, 426–435.PubMedCrossRefGoogle Scholar
  44. 44.
    Clement, L.T., Vink, P.E., and Bradley, G.E. (1990) Novel Immunoregulatory Functions of Phenotypically District Subpopulations of CD4+ Cells in the Human Neonate, J. Immunol. 145, 102–108.PubMedGoogle Scholar
  45. 45.
    Zola, H., Fusco, M., Weedon, H., Macardle, P.J., Ridings, J., and Roberton, D.M. (1996) Reduced Expression of the Interleukin-2-Receptor Gamma Chain on Cord Blood Lymphocytes: Relationship to Functional Immaturity of the Neonatal Immune Response, Immunology 87, 86–91.PubMedGoogle Scholar
  46. 46.
    Saito, S., Kato, Y., Maruyama, M., and Ichijo, M. (1992) A Study of Interferon-Gamma and Interleukin-2 Production in Premature Neonates and Neonates with Intrauterine Growth Retardation, Am. J. Reprod. Immunol. 27, 63–68.PubMedGoogle Scholar
  47. 47.
    Splawski, J.B., and Lipsky, P.E. (1991) Cytokine Regulation of Immunoglobulin Secretion by Neonatal Lymphocytes, J. Clin. Invest. 88, 967–977.PubMedCrossRefGoogle Scholar
  48. 48.
    Krampera, M., Vinante, F., Tavecchia, L., Morosato, L., Chilosi, M., Romagnani, S., Zanolin, M.E., and Pizzolo, G. (1999) Piogressive Polarization Towards a T Helper/Cytotoxic Type-1 Cytokine Pattern During Age-Dependent Maturation of the Immune Response Inversely Correlates with CD30 Cell Expression and Serum Concentration, Clin. Exp. Immunol. 117, 291–297.PubMedCrossRefGoogle Scholar
  49. 49.
    Howard, M., and O'Garra, A. (1992) Biological Properties of Interleukin 10, Immunol. Today 13, 198–200.PubMedCrossRefGoogle Scholar
  50. 50.
    Le, T., Leung, L., Carroll, W.L., and Schibler, K.R. (1997) Regulation of Interleukin-10 Gene Expression: Possible Mechanisms Accounting for Its Upregulation and for Maturational Differences in Its Expression by Blood Mononuclear Cells, Blood 89, 4112–4119.PubMedGoogle Scholar
  51. 51.
    Bessler, H., Sirota, L., Notti, I., Milo, T., and Djaldetti, M. (1993) IL-2 Receptor Gene Expression and IL-2 Production by Human Preterm Newborns' Cells, Clin. Exp. Immunol. 93, 479–483.PubMedCrossRefGoogle Scholar
  52. 52.
    Akbar, A.N., Salmon, M., and Janossy, G. (1991) The Synergy Between Naive and Memory T Cells During Activation, Immunol. Today 12, 184–188.PubMedCrossRefGoogle Scholar
  53. 53.
    Gathings, W.E., Kubagawa, H., and Cooper, M.D. (1981) A Distinctive Pattern of B Cell Immaturity in Perinatal Humans, Immunol. Rev. 57, 107–126.PubMedCrossRefGoogle Scholar
  54. 54.
    Qing, G., Rajaraman, K., and Bortolussi, R. (1995) Diminished Priming, of Neonatal Polymorphonuclear Leukocytes by Lipopolysaccharide Is Associated, with Reduced CD14 Expression, Infect. Immun. 63, 248–252.PubMedGoogle Scholar
  55. 55.
    Skansen-Saphir, U., Lindfors, A., and Andersson, U. (1993) Cytokine Production in Mononuclear Cells of Human Milk Studied at the Single-Cell Level, Pediatr. Res. 34, 213–216.PubMedGoogle Scholar
  56. 56.
    Eglinton, B.A., Roberton, D.M., and Cummins, A.G. (1994) Phenotype of T Cells, Their Soluble Receptor Levels, and Cytokine Profile of Human Breast Milk, Immunol. Cell Biol. 72, 306–313.PubMedGoogle Scholar
  57. 57.
    Donovan, S.M., and Odle, J. (1994) Growth Factors in Milk as Mediators of Infant Development, Annu. Rev. Nutr. 14, 147–167.PubMedCrossRefGoogle Scholar
  58. 58.
    Ellis, L.A., Mastro, A.M., and Picciano, M.F. (1997) Do Milk-Borne Cytokines and Hormones Influence Neonatal Immune Cell Function?, J. Nutr. 127, 985S-988S.PubMedGoogle Scholar
  59. 59.
    Bryan, D.L., Hawkes, J.S., and Gibson, R.A. (1999) Interleukin-12 in Human Milk, Pediatr. Res. 45, 858–859.PubMedGoogle Scholar
  60. 60.
    Hawkes, J.S., Neumann, M.A., and Gibson, R.A. (1999) The Effect of Breast Feeding on Lymphocyte Subpopulations in Healthy Term Infants at 6 Months of Age, Pediatr. Res. 45, 648–651.PubMedGoogle Scholar
  61. 61.
    Garofalo, R., Chheda, S., Mei, F., Palkowetz, K.H., Rudloff, H.E., Schmalstieg, F.C., Rassin, D.K., and Goldman, A.S. (1995) Interleukin-10 in Human Milk, Pediatr. Res. 37, 444–449.PubMedGoogle Scholar
  62. 62.
    Keller, M.A., Kidd, R.M., Bryson, Y.J., Turner, J.L., and Carter, J. (1981) Lymphokine Production by Human Milk Lymphocytes, Infect. Immun. 32, 632–636.PubMedGoogle Scholar
  63. 63.
    Wilson, M., Rosen, F.S., Schlossman, S.F., and Reinherz, E.L. (1985) Ontogeny of Human T and B Lymphocytes During Stressed and Normal Gestation: Phenotypic Analysis of Umbilical Cord Lymphocytes from Term and Preterm Infants, Clin. Immunol. Immunopathol. 37, 1–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Raes, M., Alliet, P., Gillis, P., Zimmermann, A., Kortleven, J., Magerman, K., Peeters, V., and Rummens, J.L. (1993) Lymphocyte Subpopulations in Healthy Newborn Infants: Comparison of Cord Blood Values with Values Five Days After Birth, J. Pediatr. 123, 465–467.PubMedCrossRefGoogle Scholar
  65. 65.
    Cossarizza, A., Ortolani, C., Paganelli, R., Barbieri, D., Monti, D., Sansoni, P., Fagiolo, U., Castellani, G., Bersani, F., Londei, M., and Franceschi, C. (1996) CD45 Isoforms Expression on CD4+ and CD8+ T Cells Throughout Life, from Newborns to Centenarians: Implications for T Cell Memory, Mech. Ageing Dev. 86, 173–195.PubMedCrossRefGoogle Scholar
  66. 66.
    Bofill, M., Akbar, A.N., Salmon, M., Robinson, M., Burford, G., and Janossy, G. (1994) Immature CD45RA(Low)RO(Low) T Cells in the Human Cord Blood. I. Antecedents of CD45RA+ Unprimed T Cells, J. Immunol. 152, 5613–5623.PubMedGoogle Scholar
  67. 67.
    Kinsella, J.E., and Lokesh, B. (1990) Dietary Lipids, Eicosanoids, and the Immune System, Crit. Care Med. 18, S94-S113.PubMedCrossRefGoogle Scholar
  68. 68.
    Calder, P.C. (1999) Dietary Fatty Acids and the Immune System, Lipids 34 (Suppl.), S137-S140.PubMedGoogle Scholar
  69. 69.
    Yaqoob, P. (1998) Lipids and the Immune Response, Curr. Opin. Clin. Nutr. Metab. Care 1, 153–161.PubMedCrossRefGoogle Scholar
  70. 70.
    Hughes, D.A., and Pinder, A.C. (2000) n−3 Polyunsaturated Fatty Acids Inhibit the Antigen-Presenting Function of Human Monocytes, Am. J. Clin. Nutr. 71, 357S-360S.PubMedGoogle Scholar
  71. 71.
    Avula, C.P., Zaman, A.K., Lawrence, R., and Fernandes, G. (1999) Induction of Apoptosis and Apoptotic Mediators in Balb/C Splenic Lymphocytes, by Dietary n−3 and n−6 Fatty Acids, Lipids 34, 921–927.PubMedCrossRefGoogle Scholar
  72. 72.
    Jolly, C.A., Jiang, Y.H., Chapkin, R.S., and McMurray, D.N. (1997) Dietary (n−3) Polyunsaturated Fatty Acids Suppress Murine Lymphoproliferation, Interleukin-2 Secretion, and the Formation of Diacylglycerol and Ceramide, J. Nutr. 127, 37–43.PubMedGoogle Scholar
  73. 73.
    Rotondo, D., Earl, C.R., Laing, K.J., and Kaimakamis, D. (1994) Inhibition of Cytokine-Stimulated Thymic Lymphocyte Proliferation by Fatty Acids: The Role of Eicosanoids, Biochim. Biophys. Acta 1223, 185–194.PubMedCrossRefGoogle Scholar
  74. 74.
    Peck, M.D. (1994) Interactions of Lipids with Immune Function II: Experimental and Clinical Studies of Lipids and Immunity, J. Nutr. Biochem. 5, 514–521.CrossRefGoogle Scholar
  75. 75.
    Tomobe, Y.I., Morizawa, K., Tsuchida, M., Hibino, H., Nakano, Y., and Tanaka, Y. (2000) Dietary Docosahexaenoic Acid Suppresses Inflammation and Immunoresponses in Contact Hypersensitivity Reaction in Mice, Lipids 35, 61–69.PubMedCrossRefGoogle Scholar
  76. 76.
    Kelley, D.S., Taylor, P.C., Nelson, G.J., Schmidt, P.C., Ferretti, A., Erickson, K.L., Yu, R., Chandra, R.K., and Mackey, B.E. (1999) Docosahexaenoic Acid Ingestion Inhibits Natural Killer Cell Activity and Production of Inflammatory Mediators in Young Healthy Men, Lipids 34, 317–324.PubMedCrossRefGoogle Scholar
  77. 77.
    Robinson, L.E., and Field, C.J. (1998) Dietary Long Chain (n−3) Fatty Acids Facilitate Immune Cell Activation in Sedentary, but Not Exercise-Trained Rats, J. Nutr. 128, 498–504.PubMedGoogle Scholar
  78. 78.
    Robinson, L.E., and Field, C.J. (2001) R3230AC Rat Mammary Tumor and Dietary (n−3) Fatty Acids Change Immune Cell Composition and Function During Mitogen Activation, J. Nutr. 131, 2021–2027.PubMedGoogle Scholar
  79. 79.
    Sasaki, T., Kanke, Y., Kudoh, K., Misawa, Y., Shimizu, J., and Takita, T. (1999) Effects of Dietary Docosahexaenoic Acid on Surface Molecules Involved in T Cell Proliferation, Biochim. Biophys. Acta 1436, 519–530.PubMedGoogle Scholar
  80. 80.
    Kuratko, C.N. (2000) Proliferation of Colonic Lymphocytes in Response to Inflammatory Cytokines Is Lower in Mice Fed Fish Oil Than in Mice Fed Corn Oil, Cancer Lett. 148, 27–32.PubMedCrossRefGoogle Scholar
  81. 81.
    Crawford, M.A., Costeloe, K., Ghebremeskel, K., Phylactos, A., and Skirvin, L.S.F. (1997) Are Deficits of Arachidonic and Docosahexaenoic Acids Responsible for the Neural and Vascular Complications of Preterm Babies?, Am. J. Clin. Nutr. 66, 1032S-1041S.PubMedGoogle Scholar
  82. 82.
    Carlson, S.E., and Werkman, S.H. (1996) A Randomized Trial of Visual Attention of Preterm Infants Fed Docosahexaenoic Acid Util Two Months, Lipids 31, 85–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Clandinin, M.T., Van Aerde, J.E., Parrott, A., Field, C.J., Euler, A.R., and Lien, E.L. (1997) Assessment of the Efficacious Dose of Arachidonic and Docosahexaenoic Acids in Preterm Infant Formulas: Fatty Acid Composition of Erythrocyte Membrane Lipids, Pediatr. Res. 42, 819–825.PubMedGoogle Scholar
  84. 84.
    Fowler, K.H., McMurray, D.N., Fan, Y.Y., Aukema, H.M., and Chapkin, R.S. (1993) Purified Dietary n−3 Polyunsaturated Fatty Acids Alter Diacylglycerol Mass, and Molecular Species Composition in Concanavalin A-Stimulated Murine Splenocytes, Biochim. Biophys. Acta 1210, 89–96.PubMedGoogle Scholar
  85. 85.
    Fowler, K.H., Chapkin, R.S., and McMurray, D.N. (1993) Effects of Purified Dietary n−3 Ethyl Esters on Murine T Lymphocyte Function, J. Immunol. 151, 5186–5197.PubMedGoogle Scholar
  86. 86.
    Berger, A., German, J.B., Chiang, B.L., Ansari, A.A., Keen, C.L., Fletcher, M.P., and Gershwin, M.E. (1993) Influence of Feeding Unsaturated Fats on Growth and Immune Status of Mice, J. Nutr. 123, 225–233.PubMedGoogle Scholar
  87. 87.
    Lai, R., Visser, L., and Poppema, S. (1994) Postnatal Changes of CD45 Expression in Peripheral Blood T and B Cells, Br. J. Haematol. 87, 251–257.PubMedGoogle Scholar
  88. 88.
    Spits, H., and de Waal Malefyt, R. (1992) Functional Characterization of Human IL-10, Int. Arch. Allergy Immunol. 99, 8–15.PubMedGoogle Scholar
  89. 89.
    Kato, C., Sato, K., Eishi, Y., and Nakamura, K. (1999) The Influence of Initial Exposure Timing to Beta-Lactoglobulin on Oral Tolerance Induction, J. Allergy Clin. Immunol. 104, 870–878.PubMedCrossRefGoogle Scholar
  90. 90.
    Swain, S.L. (1991) Lymphokines and the Immune Response: The Central Role of Interleukin-2, Curr. Opin. Immunol. 3, 304–310.PubMedCrossRefGoogle Scholar
  91. 91.
    Gillis, S. (1991) Cytokine Receptors, Curr. Opin. Immunol. 3, 315–319.PubMedCrossRefGoogle Scholar
  92. 92.
    Gattorno, M., Facchetti, P., Ghiotto, F., Vignola, S., Buoncompagni, A., Prigione, I., Picco, P., and Pistoia, V. (1997) Synovial Fluid T Cell Clones from Oligoarticular Juvenile Arthritis Patients Display a Prevalent Th1/Th0-Type Pattern of Cytokine Secretion Irrespective of Immunophenotype, Clin. Exp. Immunol. 109, 4–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Watson, W., Oen, K., Ramdahin, R., and Harman, C. (1991) Immunoglobulin and Cytokine Production by Neonatal Lymphocytes, Clin. Exp. Immunol. 83, 169–174.PubMedCrossRefGoogle Scholar
  94. 94.
    Theze, J., Alzari, P.M., and Bertoglio, J. (1996) Interleukin 2 and Its Receptors: Recent Advances and New Immunological Functions, Immunol. Today 17, 481–486.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2001

Authors and Affiliations

  • Catherine J. Field
    • 3
    • 1
  • M. Thomas Clandinin
    • 3
    • 1
  • John E. Van Aerde
    • 2
  1. 1.Department MedicineUniversity of AlbertaEdmontonCanada
  2. 2.PediatricsUniversity of AlbertaEdmontonCanada
  3. 3.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations