Lipids

, Volume 36, Issue 4, pp 327–346

Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids

Review

Abstract

Atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) has proven to be a very valuable technique for analysis of lipids from a variety of classes. This instrumental method readily produces useful ions with gentle fragmentation from large neutral molecules such as triacylglycerols and carotenoids, which are often difficult to analyze using other techniques. Molecules that are easily ionized, such as phospholipids, produce molecular ions and diagnostically useful fragment ions that are complementary to those produced by methods such as electrospray ionization MS with collision-induced dissociation. The simplicity and versatility of APCI-MS make it an ideal tool for use in solving hitherto very difficult analytical problems.

Abbreviations

ACN

acyl carbon number

AMVN

azobis(2,4-dimethylvaleronitrile)

APCI

atmospheric pressure chemical ionization

API

atmospheric pressure ionization

Br-MB

3-bromomethyl-7-methoxy-1,4-benzoxazin-2-one

CID

collision-induced dissociation

cSFC

capillary supercritical fluid chromatography

DAG

diacylglycerol

ECN

equivalent carbon number

EIC

extracted ion chromatogram

ELSD

evaporative light-scattering detector

ESI

electrospray ionization

FA

fatty acid

FAME

fatty acid methyl ester

FI

flow injection

FID

flame-ionization detection

GC

gas chromatography

L

linoleic acid

LC

liquid chromatography

Ln

linolenic acid

LSIMS

liquid secondary ion mass spectrometry

MAG

monoacylglycerol

MS

mass spectrometry

MS/MS

tandem mass spectrometry

O

oleic acid

P

palmitic acid

PC

phosphatidylcholine

PG

phosphatidylglycerol

RP-HPLC

reversed-phase high-performance liquid chromatography

S

stearic acid

SFC

supercritical fluid chromatography

SIM

selected ion monitoring

TAG

triacylglycerol

THCA

3α,7α,12α-trihydroxy-5β-cholestanic acid

TSP

thermospray

UV

ultraviolet

Vis

visible

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Niessen, W.M.A. (1999) in Liquid Chromatography—Mass Spectrometry, 2nd edn. (Niessen, W.M.A., ed.) Marcel Dekker, Inc., New York, p. 99.Google Scholar
  2. 2.
    Thomson, B.A. (1998) Atmospheric Pressure Ionization and Liquid Chromatography—Together at Last, J. Am. Soc. Mass Spectrom. 9, 187–193.CrossRefGoogle Scholar
  3. 3.
    Horning, E.C., Horning, M.G., Carroll, D.I., Dzidic, I., and Stillwell, R.N. (1973) New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure, Anal. Chem. 45, 936–943.CrossRefGoogle Scholar
  4. 4.
    Carroll, D.I., Dzidic, I., Stillwell, R.N., Horning, M.G., and Horning, E.C. (1974) Subpicogram Detection System for Gas Phase Analysis Based Upon Atmospheric Pressure Ionization (API) Mass Spectrometry, Anal. Chem. 46, 706–710.CrossRefGoogle Scholar
  5. 5.
    Horning, E.C., Carroll, D.I., Dzidic, I., Haegele, K.D., Horning, M.G., and Stillwell, R.N. (1974) Atmospheric Pressure Ionization Mass Spectrometry. Solvent-Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatographic Effluent Stream, J. Chromatogr. Sci. 12, 725–729.PubMedGoogle Scholar
  6. 6.
    Carroll, D.I., Dzidic, I., Stillwell, R.N., Haegele, K.D., and Horning, E.C. (1975) Atmospheric Pressure Ionization Mass Spectrometry: Corona Discharge Ion Source for Use in Liquid Chromatography-Mass Spectrometer-Computer Analytical System, Anal. Chem. 47, 2369–2373.CrossRefGoogle Scholar
  7. 7.
    Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B. (1985) Electrospray Interface for Liquid Chromatographs and Mass Spectrometers, Anal. Chem. 57, 675–679.PubMedCrossRefGoogle Scholar
  8. 8.
    Mann, M., Meng, C.K., and Fenn, J.B. (1989) Interpreting Mass Spectra of Multiply Charged Ions, Anal. Chem. 61, 1702–1708.CrossRefGoogle Scholar
  9. 9.
    Bruins, A.P., Covey, T.R., and Henion, J.D. (1987) Ion Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry, Anal. Chem. 59, 2642–2646.CrossRefGoogle Scholar
  10. 10.
    Byrdwell, W.C. (1998) APCI-MS for Lipid Analysis, inform 9, 986–997.Google Scholar
  11. 11.
    Good, A., Durden, D.A., and Kebarle, P. (1970) Ion-Molecule Reactions in Pure Nitrogen and Nitrogen Containing Traces of Water at Total Pressures 0.5–4 Torr. Kinetics of Clustering Reactions Forming H+ (H2O)n, J. Chem. Phys. 52, 212–221.CrossRefGoogle Scholar
  12. 12.
    Kusaka, T., Ikeda, M., Nakano, H., and Numajiri, Y. (1988) Liquid Chromatography/Mass Spectrometry of Fatty Acids as Their Anilides, J. Biochem. 104, 495–497.PubMedGoogle Scholar
  13. 13.
    Ikeda, M., and Kusaka, T. (1992) Liquid Chromatography-Mass Spectrometry of Hydroxy and Non-Hydroxy Fatty Acids as Amide Derivatives, J. Chromatogr. 575, 197–205.PubMedGoogle Scholar
  14. 14.
    Kusaka, T., and Ikeda, M. (1993) Liquid Chromatography-Mass Spectrometry of Fatty Acids Including Hydroxy and Hydroperoxy Acids as Their 3-Methyl-7-methoxy-1,4-benzoxazin-2-one Derivatives, J. Chromatogr. 639, 165–173.CrossRefGoogle Scholar
  15. 15.
    Tyrefors, L.N., Moulder, R.X., and Markides, K.E. (1993) Interface for Open Tubular Column Supercritical Fluid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry, Anal. Chem. 65, 2835–2840.CrossRefGoogle Scholar
  16. 16.
    Byrdwell, W.C., and Emken, E.A. (1995) Analysis of Triglycerides Using Atmospheric Pressure Chemical Ionization Mass Spectrometry, Lipids 30, 173–175.PubMedGoogle Scholar
  17. 17.
    Neff, W.E., and Byrdwell, W.C. (1995) Soybean Oil Triacylglycerol Analysis by Reversed-Phase High-Performance Liquid tography/Mass Spectrometry, J. Am. Oil. Chem. Soc. 77, 1049–1059.Google Scholar
  18. 47.
    Rezanka, T. (2000) Analysis of Very Long Chain Polyunsaturated Fatty Acids Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, Biochem. System. Ecol. 28, 847–856.CrossRefGoogle Scholar
  19. 48.
    Rezanka, T. (2000) Analysis of Polyunsaturated Fatty Acids Using High Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. High Resolut. Chromatogr. 23, 338–342.CrossRefGoogle Scholar
  20. 49.
    Bylund, J., Ericsson, J., and Oliw, E.H. (1998) Analysis of Cytochrome P450 Metabolites of Arachidonic and Linoleic Acids by Liquid Chromatography-Mass Spectrometry with Ion Trap MS2, Anal. Biochem. 265, 55–68.PubMedCrossRefGoogle Scholar
  21. 50.
    Karlsson, A.A., Michelson, P., Larsen, A., and Odham, G. (1996) Normal-Phase Liquid Chromatography Class Separation and Species Determination of Phospholipids Utilizing Electrospray Mass Spectrometry/Tandem Mass Spectrometry, Rapid Commun. Mass Spectrom. 10, 775–780.CrossRefGoogle Scholar
  22. 51.
    Byrdwell, W.C., and Borchman, D. (1997) Liquid Chromatography/Mass-Spectrometric Characterization of Sphingomyelin and Dihydrosphingomyelin of Human Lens Membranes, Ophthalmic Res. 29, 191–206.PubMedCrossRefGoogle Scholar
  23. 52.
    Byrdwell, W.C. (1998) Dual Parallel Mass Spectrometers for Analysis of Sphingolipid, Glycerolipid and Plasmalogen Molecular Species, Rapid. Commun. Mass Spectrom. 12, 256–272.PubMedCrossRefGoogle Scholar
  24. 53.
    Karlsson, A.A., Michelsen, P., and Odham, G. (1998) Molecular Species of Sphingomyelin: Determination by High-Performance Liquid Chromatography/Mass Spectrometry with Electrospray and High-Performance Liquid Chromatography/Tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization, J. Mass Spectrom. 33, 1192–1198.PubMedCrossRefGoogle Scholar
  25. 54.
    Qiu, D.F., Xiao, X.Y., Walton, T.J., Games, M.P.L., and Games, D.E. (1999) High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry of Phospholipids in Natronobacterium magadii, Eur. Mass Spectrom. 5, 151–156.Google Scholar
  26. 55.
    Couch, L.H., Churchwell, M.I., Doerge, D.R., Tolleson, W.H., and Howard, P.C. (1997) Identification of Ceramides in Human Cells Using Liquid Chromatography with Detection by Atmospheric Pressure Chemical Ionization-Mass Spectrometry, Rapid Commun. Mass Spectrom. 11, 504–512.PubMedCrossRefGoogle Scholar
  27. 56.
    Van Breeman, R.B., Huang, C.R., Tan, Y., Sander, L.C., and Schilling, A.B. (1996) Liquid Chromatography/Mass Spectrometry of Carotenoids Using Atmospheric Pressure Chemical Ionization, J. Mass Spectrom. 31, 975–981.CrossRefGoogle Scholar
  28. 57.
    Clarke, P.A., Barnes, K.A., Startin, J.R., Ibe, F.I., and Shepherd, M.J. (1996) High Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry for the Determination of Carotenoids, Rapid Commun. Mass Spectrom. 10, 1781–1785.CrossRefGoogle Scholar
  29. 58.
    Liebler, D.C., and McClure, T.D. (1996) Antioxidant Reactions of β-Carotene: Identification of Carotenoid-Radical Adducts, Chem. Res. Toxicol. 9, 8–11.PubMedCrossRefGoogle Scholar
  30. 59.
    Tang, G.W., Andrien, B.A., Dolnikowski, G.G., and Russell, R.M. (1997) Atmospheric Pressure Chemical Ionization Mass Spectrometry in Studying β-Carotene Conversion to Retinol in Humans, Methods Enzymol. 282, 140–154.PubMedCrossRefGoogle Scholar
  31. 60.
    Hagiwara, T., Yasuno, T., Funayama, K., and Suzuki, S. (1997) Determination of Lycopene, α-Carotene and β-Carotene in Vegetable Juice by Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. Food Hyg. Soc. Jpn. 38, 211–218.Google Scholar
  32. 61.
    Hagiwara, T., Yasuno, T., Funayama, K., and Suzuki, S. (1998) Determination of Lycopene, α-Carotene and β-Carotene in Serum by Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry with Selected Ion Monitoring, J. Chromatogr. B 708, 67–73.Google Scholar
  33. 62.
    van Breeman, R.B., Nikolic, D., Xu, X., Xiong, Y., van Lieshout, M., West, C.E., and Schilling, A.B. (1998) Development of a Method for Quantitation of Retinol and Retinyl Palmitate in Human Serum Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry, J. Chromatogr. A 794, 245–251.CrossRefGoogle Scholar
  34. 63.
    Wang, Y., Xu, X., van Lieshout, M., West, C.E., Lugtenburg, J., Verhoeven, M.A., Creemers, A.F.L., Muhilal, and van Breemen, R.B. (2000) A Liquid Chromatography-Mass Spectrometry Method for the Quantification of Bioavailability and Bioconversion of β-Carotene to Retinol in Humans, Anal. Chem. 72, 4999–5003.PubMedCrossRefGoogle Scholar
  35. 64.
    Lacker, T., Strohschein, S., and Albert, K. (1999) Separation and Identification of Various Carotenoids by C30 Reversed-Phase High-Performance Liquid Chromatography Coupled to UV and Atmospheric Pressure Chemical Ionization Mass Spectrometric Detection, J. Chromatogr. A 854, 37–44.PubMedCrossRefGoogle Scholar
  36. 65.
    Hopmans, E.C., Schouten, S., Pancost, R.D., Marcel, T.J., van der Meer, M.T.J., and Sinninghe Damste, J.S. (2000) Analysis of Intact Tetraether Lipids in Archaeal Cell Material and Sediments by High Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry, Rapid Commun. Mass Spectrom. 14, 585–589.PubMedCrossRefGoogle Scholar
  37. 66.
    Mitamura, K., and Shimada, K. (1999) High-Performance Liquid Chromatography Mass Spectrometry of Steroids, Bunseki Kagaku (Japanese) 48, 401–411.Google Scholar
  38. 67.
    Shimada, K. (1997) Analysis of Neurosteroids, Yakugaku Zasshi [J. Pharm. Soc. Jpn.] (Japanese) 117, 681–689.Google Scholar
  39. 68.
    Adachi, J., Ueno, Y., Asano, M., Nushida, H., and Tatsuno, Y. (1997) Analysis of Cholesterol Oxidation Products Using High-Performance Liquid Chromatography/Mass Spectrometry, Nippon Iyo Masu Supekutoru Gakkai Koenshu (Japanese) 22, 145–148.Google Scholar
  40. 69.
    Kobayashi, Y., Saiki, K., and Watanabe, F. (1993) Characteristics of Mass Fragmentation of Steroids by Atmospheric Pressure Chemical Ionization-Mass Spectrometry, Biol. Pharm. Bull. 16, 1175–1178.PubMedGoogle Scholar
  41. 70.
    Ma, Y.-C., and Kim, H.-Y. (1997) Determination of Steroids by Liquid Chromatography/Mass Spectrometry, J. Am. Soc. Mass Spectrom. 8, 1010–1020.CrossRefGoogle Scholar
  42. 71.
    Joos, P.E., and van Ryckeghem, M. (1999) Liquid Chromatography-Tandem Mass Spectrometry of Some Anabolic Steroids, Anal. Chem. 71, 4701–4710.PubMedCrossRefGoogle Scholar
  43. 72.
    Gamoh, K., Abe, H., Shimada, K., and Takatsuto, S. (1996) Liquid Chromatography Mass Spectrometry with Atmospheric Pressure Chemical Ionization of Free Brassinosteroids, Rapid Commun. Mass Spectrom. 10, 903–906.CrossRefGoogle Scholar
  44. 73.
    Gamoh, K., Prescott, M.C., Goad, L.J., and Takatsuto, S. (1996) Analysis of Brassinosteroids by Liquid Chromatography Mass Spectrometry, Bunseki Kagaku (Japanese) 45, 523–527.Google Scholar
  45. 74.
    Huopalahti, R.P., and Henion, J.D. (1996) Application of Supercritical Fluid Extraction and High Performance Liquid Chromatography Mass Spectrometry for the Determination of Some Anabolic Agents Directly from Bovine Tissue Samples, J. Liq. Chromatog. Rel. Technol. 19, 69–87.Google Scholar
  46. 75.
    Fredline, V.F., Taylor, P.J., Dodds, H.M., and Johnson, A.G. (1997) A Reference Method for the Analysis of Aldosterone in Blood by High-Performance Liquid Chromatography Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry, Anal. Biochem. 252, 308–313.PubMedCrossRefGoogle Scholar
  47. 76.
    Wainwright, G., Prescott, M.C., Lomas, L.O., Webster, S.G., and Rees, H.H. (1997) Development of a New High-Performance Liquid Chromatography Mass Spectrometric Method for the Analysis of Ecdysteroids in Biological Extracts, Arch. Insect Biochem. Physiol. 35, 21–31.CrossRefGoogle Scholar
  48. 77.
    Constanzer, M.L., Chavez, C.M., Matuszewski, B.K., Carlin, J., and Graham, D. (1997) Low Level Determination of a Novel 4-Azasteroid and Its Carboxylic Acid Metabolite in Human Plasma and Semen Using High-Performance Liquid Chromatography with Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry, J. Chromatogr. A 693, 117–129.Google Scholar
  49. 78.
    Sjoberg, P.J.R., and Markides, K.E. (1998) Energy-Resolved Collision-Induced Dissociation Atmospheric Pressure Chemical Ionization Mass Spectrometry of Constitutional and Stereo Steroid Isomers, J. Mass Spectrom. 33, 872–883.CrossRefGoogle Scholar
  50. 79.
    Tuomola, M., Hakala, M., and Manninen, P. (1998) Determination of Androstenone in Pig Fat Using Packed Column Supercritical Fluid Chromatography Mass Spectrometry, J. Chromatogr. B 719, 25–30.Google Scholar
  51. 80.
    Nakajima, M., Yamato, S., and Shimada, K. (1998) Determination of Dehydroepiandrosterone Sulphate in Biological Samples by Liquid Chromatography Atmospheric Pressure Chemical Ionization Mass Spectrometry Using [7,7,16,16-H-2(4)]-Dehydroepiandrosterone Sulphate as an Internal Standard, Biomed. Chromatogr. 12, 211–216.PubMedCrossRefGoogle Scholar
  52. 81.
    Ikegawa, S., Goto, T., Mano, N., and Goto, J. (1998) Substrate Specificity of THCO-CoA Oxidases from Rat Liver Light Mitochondrial Fractions on Dehydrogenation of 3α,7α,12α-Trihydroxy-5β Cholestanoic Acid CoA Thioester, Steroids 63, 603–607.PubMedCrossRefGoogle Scholar
  53. 82.
    Shimada, K., and Mukai, Y. (1998) Studies on Neurosteroids VII. Determination of Pregnenolone and Its 3-Stearate in Rat Brains Using High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry, J. Chromatogr. B 714, 153–160.Google Scholar
  54. 83.
    Rule, G., and Henion, J. (2000) High-Throughput Sample Preparation and Analysis Using 96-Well Membrane Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Steroids in Human Urine, J. Am. Soc. Mass Spectrom. 10, 1322–1327.CrossRefGoogle Scholar

Copyright information

© AOCS Press 2001

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryFlorida Atlantic UniversityBoca Raton

Personalised recommendations