, Volume 35, Issue 1, pp 45–54 | Cite as

Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits

  • E. Coni
  • R. Di Benedetto
  • M. Di Pasquale
  • R. Masella
  • D. Modesti
  • R. Mattei
  • E. A. Carlini


On the basis of the results obtained with pilot studies conducted in vitro on human low density lipoprotein (LDL) and on cell cultures (Caco-2), which had indicated the ability of certain molecules present in olive oil to inhibit prooxidative processes, an in vivo study was made of laboratory rabbits fed special diets. Three different diets were prepared: a standard diet for rabbits (diet A), a standard diet for rabbits modified by the addition of 10% (w/w) extra virgin olive oil (diet B), a modified standard diet for rabbits (diet C) differing from diet B only in the addition of 7 mg kg−1 of oleuropein. A series of biochemical parameters was therefore identified, both in the rabbit plasma and the related isolated LDL, before and after Cu-induced oxidation. The following, in particular, were selected: (i) biophenols, vitamins E and C, uric acid, and total, free, and ester cholesterol in the plasma; (ii) proteins, triglycerides, phospholipids, and total, free, and ester cholesterol in the native LDL (for the latter, the dimensions were also measured); (iii) lipid hydroperoxides, aldehydes, conjugated dienes, and relative electrophoretic mobility (REM) in the oxidized LDL (ox-LDL). In an attempt to summarize the results obtained, it can be said that this investigation has not only verified the antioxidant efficacy of extra virgin olive oil biophenols and, in particular, of oleuropein, but has also revealed a series of thus far unknown effects of the latter on the plasmatic lipid situation. In fact, the addition of oleuropein in diet C increased the ability of LDL to resist oxidation (less conjugated diene formation) and, at the same time, reduced the plasmatic levels of total, free, and ester cholesterol (−15, −12, and −17%, respectively), giving rise to a redistribution of the lipidic components of LDL (greater phospholipid and cholesterol amounts) with an indirect effect on their dimesions (bigger by about 12%).



endothelial release factor




high-performance liquid chromatography


low density lipoprotein




oxidized LDL


phosphate-buffered saline


polyacrylamide gradient gel electrophoresis


relative electrophoretic mobility


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witzum, J.L. (1994) The Oxidative Hypothesis of Atherosclerosis, Lancet 344, 793–795.CrossRefGoogle Scholar
  2. 2.
    Berliner, J.A., Mohamad, N., Fogelman, A.M., Frank, J.S., Demer, L.L., Edwards, P.A., Watson A.D., and Lusis A.J. (1995) Atherosclerosis: Basic Mechanisms. Oxidation, Inflammation, and Genetics, Circulation 91, 2488–2496.PubMedGoogle Scholar
  3. 3.
    Esterbauer, H., Gebicki, J., Puhl, H., and Jürgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL, Free Radical Biol. Med. 13, 341–390.CrossRefGoogle Scholar
  4. 4.
    Esterbauer, H., Schmidt, R., and Hayn, M. (1997) Relationships Among Oxidation of Low-Density Lipoprotein, Antioxidant Protection, and Atherosclerosis, Adv. Pharmacol. 38, 425–456.PubMedGoogle Scholar
  5. 5.
    Holvoet, P., and Collen, D. (1998) Oxidation of Low Density Lipoproteins in the Pathogenesis of Atherosclerosis, Atherosclerosis 137 (Suppl.), S33-S38.PubMedCrossRefGoogle Scholar
  6. 6.
    Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s, Nature 362, 801–809.PubMedCrossRefGoogle Scholar
  7. 7.
    Witzum, J.L., and Steinberg, D. (1991) Role of Oxidized Low-Density Lipoproteins in Atherogenesis, J. Clin. Invest. 88, 1785–1792.Google Scholar
  8. 8.
    Quinn, M.T., Parthasarathy, S., Fong, L.G., and Steinberg, D. (1987) Oxidatively Modified Low Density Lipoproteins: A Potential Role in Recruitment and Retention of Monocyte/Macrophages During Atherogenesis, Proc. Natl. Acad. Sci. USA 84, 2995–2998.PubMedCrossRefGoogle Scholar
  9. 9.
    Berliner, J., Territo, M., Sevanian, A., Ramin, S., Kim, J.A., Bamshad, B., Esterson, M., and Fogelman, A.M. (1990) Minimally Modified Low Density Lipoprotein Stimulates Monocytes Endothelial Interaction, J. Clin. Invest. 85, 1260–1266.PubMedGoogle Scholar
  10. 10.
    Rice-Evans, C., Miller, N., and Paganga, G. (1996) Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids, Free Radical Biol. Med. 20, 933–956.CrossRefGoogle Scholar
  11. 11.
    Machlin, L., and Bendich, A. (1987) Free Radical Tissue Damage: Protective Role of Antioxidant Nutrients, FASEB J. 1, 444–445.Google Scholar
  12. 12.
    Martin, A., Wu, D., Meydani, S.N., Blumberg, J.B., and Meydani, M. (1998) Vitamin E Protects Human Aortic Endothelial Cells from Cytotoxic Injury Induced by Oxidized LDL in vitro, J. Nutr. Biochem. 9, 201–208.CrossRefGoogle Scholar
  13. 13.
    Jialal, I., and Grundy, S.M. (1992) The Effect of Dietary Supplementation with α-Tocopherol in the Oxidative Modification of LDL, J. Lipid Res. 33, 899–906.PubMedGoogle Scholar
  14. 14.
    Abbey, M., Nestel, P.J., and Baghurst, P.A. (1993) Antioxidant Vitamins and Low Density Lipoprotein Oxidation, Am. J. Clin. Nutr. 58, 525–532.PubMedGoogle Scholar
  15. 15.
    Sato, K., Niki, E., and Shimasaki, H. (1990) Free Radical-Mediated Chain Oxidation of Low Density Lipoprotein and Its Synergistic Inhibition by Vitamin E and Vitamin C, Arch. Biochem. Biophys. 279, 402–405.PubMedCrossRefGoogle Scholar
  16. 16.
    Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W.W., Fong, H.H.S., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C., and Pezzuto, J.M. (1997) Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes, Science 275, 218–220.PubMedCrossRefGoogle Scholar
  17. 17.
    Tijburg, L.B.M., Wiseman, S., Meijer, G.W., and Weststrate, J.A. (1997) Effects of Green Tea, Black Tea and Lipophilic Antioxidants on LDL Oxidability and Atherosclerosis of Hypercholesterolaemic Rabbits, Atherosclerosis 135, 37–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Serafini, M., Maiani, G., and Ferro-Luzzi, A. (1998) Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans, J. Nutr. 128, 1003–1007.PubMedGoogle Scholar
  19. 19.
    Baldioli, M., Servili, M., Perretti, G., and Montedoro, G.F. (1996) Antioxidant Activity of Tocopherols and Phenolic Compounds in Virgin Olive Oil, J. Am. Oil. Chem. Soc. 73, 1589–1593.CrossRefGoogle Scholar
  20. 20.
    Montedoro, G., Servili, M., Baldioli, M., and Miniati, E. (1992) Simple and Hydrolyzable Phenolic Compounds in Virgin Olive Oil. 1. Their Extraction, Separation, and Quantitative and Semiquantitative Evaluation by HPLC, J. Agric. Food Chem. 40, 1571–1576.CrossRefGoogle Scholar
  21. 21.
    Graciani Constante, E., and Vasquez Rocero, A. (1980) Estudio de los componentes del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). II. Cromatografia en fase inversa, Grasa Aceites 31, 237–243.Google Scholar
  22. 22.
    Papadopoulos, G., and Boskou, D. (1991) Antioxidant Effect of Natural Phenols on Olive Oil, J. Am. Oil Chem. Soc. 68, 669–671.Google Scholar
  23. 23.
    Wiseman, S.A., Mathot, J.N.N.J., de Fouw, N.J., and Tijburg, L.B.M. (1996) Dietary Non-Tocopherol Antioxidants Present in Extra Virgin Olive Oil Increase the Resistance of Low Density Lipoproteins to Oxidation in Rabbits, Atherosclerosis 120, 15–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Nardini, M., Natella, F., Gentili, V., Di Felice, M., and Scaccini, C. (1997) Effect of Caffeic Acid Dietary Supplementation on the Antioxidant Defense System in Rat: An in vivo Study, Arch. Biochem. Biophys. 342, 157–160.PubMedCrossRefGoogle Scholar
  25. 25.
    Visioli, F., and Galli, C. (1994) Oleuropein Protects Low Density Lipoproteins from Oxidation, Life Sci. 55, 1965–1971.PubMedCrossRefGoogle Scholar
  26. 26.
    Masella, R., Cantafora, A., Modesti, D., Cardilli, A., Gennaro, L., Bocca, A., and Coni, E. (1999) Antioxidant Activity of 3,4-DHPEA-EA and Protocatecuic Acid: A Comparative Assessment with Other Olive Oil Biophenols, Redox Rep. 4, 113–121.PubMedCrossRefGoogle Scholar
  27. 27.
    Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., Malorni, W., and Masella, R. (1999) Tyrosol, the Major Olive Oil Biophenol, Protects Against Oxidized-LDL-Induced Injury in Caco-2 Cells, J. Nutr. 129, 1269–1277.PubMedGoogle Scholar
  28. 28.
    Italian Legislative Decree n. 116 (1992) Suppl. Ord. G.U. n. 40, 18.2.1992.Google Scholar
  29. 29.
    Havel, R.J., Eder, H.A., and Bragdon, J.K. (1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1353.PubMedCrossRefGoogle Scholar
  30. 30.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  31. 31.
    Papadopoulos, G.F., and Tsimidou, M. (1992) Rapid Method for the Isolation of Phenolic Compounds from Virgin Olive Oil Using Solid Phase Extraction, XVI International Conference Group Polyphenols, July, 13–16.Google Scholar
  32. 32.
    Cavina, G., Gallinella, B., Porrà, R., Pecora, P., and Suraci, C. (1988) Carotenoids, Retinoids and α-Tocopherol in Human Serum: Identification and Determination by Reversed-Phase HPLC, J. Pharmaceut. Biomed. Anal. 6, 259–269.CrossRefGoogle Scholar
  33. 33.
    Ross, M.A. (1994) Determination of Ascorbic Acid and Uric Acid in Plasma by High-Performance Liquid Chromatography, J. Chromatogr. B 657, 197–200.Google Scholar
  34. 34.
    Krauss, R.M., and Burke, D.J. (1982) Identification of Multiple Subclasses of Plasma Low Density Lipoproteins in Normal Humans, J. Lipid Res. 23, 97–104.PubMedGoogle Scholar
  35. 35.
    Coresh, J., Kwiterovich, P.O., Smith, J.H., and Bachorik, P.S. (1993) Association of Plasma Triglyceride Concentration and LDL Particle Diameter, Density, and Chemical Composition with Premature Coronary Artery Disease in Men and Women, J. Lipid Res. 34, 1687–1697.PubMedGoogle Scholar
  36. 36.
    Esterbauer, H., Striegl, G., Puhl, H., and Dieber-Rotheneder, M. (1989) Continuous Monitoring of in vitro Oxidation of Human Low Density Lipoprotein, Free Radical Res. Com. 6, 67–75.Google Scholar
  37. 37.
    Puhl, H., Waeg, G., and Esterbauer, H. (1994) Methods to Determine Oxidation of Low Density Lipoproteins, Methods Enzymol. 233, 425–441.PubMedGoogle Scholar
  38. 38.
    El-Saadani, M., Esterbauer, H., El-Sayed, M., Goher, M., Nassar, A.Y., and Yurgens, G. (1989) A Spectrophotometric Assay for Lipid Peroxides in Serum Lipoproteins Using a Commercially Available Reagent, J. Lipid Res. 30, 627–630.PubMedGoogle Scholar
  39. 39.
    Morel, D.W., Hessler, J.R., and Chisolm, G.M. (1976) Low Density Lipoprotein Cytotoxicity Induced by Free Radical Peroxidation of Lipids, J. Lipid Res. 24, 1070–1076.Google Scholar
  40. 40.
    Hollman, P.C.H., Van der Gaag, M., Mengelers, M.J.B., Van Trijp, J.M.P., De Vries, J.H.M., and Katan, M.B. (1996) Absorption and Disposition Kinetics of the Dietary Antioxidant Quercetin in Man, Free Radical Biol. Med. 21, 703–707.CrossRefGoogle Scholar
  41. 41.
    Servili, M., Baldioli, M., Miniati, E., and Montedoro, G. (1996) Antioxidant Activity of New Phenolic Compounds Extracted from Virgin Olive Oil and Their Interaction with α-Tocopherol and β-Carotene, Riv. It. Sost. Grasse 73, 55–59.Google Scholar
  42. 42.
    Esterbauer, H., Dieber-Rotheneder, M., Striegl, G., and Waeg, G. (1991) Role of Vitamin E in Preventing the Oxidation of Low Density Lipoprotein, Am. J. Clin. Nutr. 53, 314S-321S.PubMedGoogle Scholar
  43. 43.
    Tribble, D.L. (1995) Lipoprotein Oxidation in Dyslipidemia: Insights into General Mechanisms Affecting Lipoprotein Oxidative Behaviour, Curr. Opin. Lipidol. 6, 196–208.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith, L.L. (1991) Another Cholesterol Hypothesis: Cholesterol as an Antioxidant, Free Radical Biol. Med. 11, 47–61.CrossRefGoogle Scholar
  45. 45.
    Dejager, S., Bruckert, E., and Chapman, M.J. (1993) Dense Low Density Lipoprotein Subspecies with Diminished Oxidative Resistance Predominate in Combined Hyperlipidemia, J. Lipid Res. 34, 295–308.PubMedGoogle Scholar
  46. 46.
    Hirano, T., Naito, H., Kurokawa, M., Ebara, T., Nagano, S., Adachi, M., and Yoshino, G. (1996) High Prevalence of Small LDL Particles in Non-Insulin-Dependent Diabetic Patients with Nephropathy, Atherosclerosis 123, 57–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Chapman, M.J., Guèrin, M., and Bruckert, E. (1998) Atherogenic, Dense Low-Density Lipoproteins. Pathophysiology and New Therapeutic Approaches, Eur. Heart J. 19 (Suppl. A), A24-A30.PubMedGoogle Scholar
  48. 48.
    Bourne, G.H. (1985) World Review of Nutrition and Dietetics, Vol. 46, Karger, Basel, pp. 219–251.Google Scholar
  49. 49.
    Nenster, M.S., Gudmundsen, O., Malterud, K.E., Berg, T., and Drevon, C.A. (1994) Effect of Cholesterol Feeding of Susceptibility of Lipoprotein to Oxidative Modification, Biochim. Biophys. Acta 1213, 207–214.Google Scholar
  50. 50.
    Chang, Y.H., Abdalla, D.S.P., and Sevanian, A. (1997) Characterization of Cholesterol Oxidation Products Formed by Oxidative Modification of Low Density Lipoprotein, Free Radical Biol. Med. 23, 202–214.CrossRefGoogle Scholar
  51. 51.
    McLaughin, P.J., and Weihrauch, J.L. (1979) Vitamin E Content of Foods, J. Am. Diet. Assoc. 75, 647–665.Google Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  • E. Coni
    • 3
  • R. Di Benedetto
    • 3
  • M. Di Pasquale
    • 3
  • R. Masella
    • 1
  • D. Modesti
    • 1
  • R. Mattei
    • 2
  • E. A. Carlini
    • 2
  1. 1.Metabolism and Pathological Biochemistry DepartmentIstituto Superiore di SanitàRomeItaly
  2. 2.Psychobiology DepartmentUniversidade Federal de Saõ PauloSaõ PauloBrazil
  3. 3.Food Dept.Istituto Superiore di SanitàRomeItaly

Personalised recommendations