Journal of Surfactants and Detergents

, Volume 1, Issue 4, pp 547–554

Gemini surfactants

  • Milton J. Rosen
  • David J. Tracy


The literature, including patents, describing the emerging area of gemini surfactants is reviewed. The differences in structure/property relationships between gemini and comparable conventional surfactants are described and discussed in terms of their predicted performance properties. Supportive performance data are enumerated.

Key words

Critical micelle concentration dispersion emulsification foaming gemini irritation surfactants synergism wetting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreimeier, U.S. Patent 2,106,180 (1935).Google Scholar
  2. 2.
    Rosen, M.J., Geminis: A New Generation of Surfactants, CHEMTECH 23:30–33 (1993).Google Scholar
  3. 3.
    Parreira, H.C., E.R. Lukenbach, and M.O. Lindemann, Physical Chemical Properties of Solutions of Bis-(Quaternary) Ammonium Bromides, J. Am. Oil Chem. Soc. 56:1015–1021 (1979).Google Scholar
  4. 4.
    Hjelmeland, L.M., W.A. Klee, and J.C. Osborne, a New Class of Nonionic Detergents with a Gluconamide Polar Group, Anal. Biochem. 130:485–490 (1983).CrossRefGoogle Scholar
  5. 5.
    Devinsky, F., I. Masarova, and I. Lacko, Surface Activity and Micelle Formation of Some New Bisquaternary Ammonium Salts, J. Colloid Interface Sci. 105:235–239 (1985).CrossRefGoogle Scholar
  6. 6.
    Devinsky, F., I. Lacko, F.B. Bittererova, and L. Tomeckova, Relationship Between Structure, Surface Activity, and Micelle Formation of Some New Bisquaternary Isosteres of 1,5-Pentanediammonium Dibromides, 114:314–322 (1986).CrossRefGoogle Scholar
  7. 7.
    Okahara, M., A. Masuyama, Y. Sumida, and Y.-P. Zhu, Surface Active Properties of New Types of Amphipathic Compounds with Two Lipophilic Alkyl Chains, J. Jpn. Oil Chem. Soc (Yukagaka) 37:746–748 (1988).Google Scholar
  8. 8.
    Micich, T.J., and W.M. Linfield, Wetting Properties of Nonionics from Branched Fatty Diamides, J. Am. Oil Chem. Soc. 65:820–825 (1988).Google Scholar
  9. 9.
    Rozycka-Roszak, B., S. Witek, and S., Przestalski, A Comparision of the Micellization of Selected Amphiphilic N, N′-Bis-dimethyl-1,2-ethanediamine Derivatives with Some Amphiphilic Betaine Ester Derivatives, J. Colloid Interface Sci. 131:181–185 (1989).CrossRefGoogle Scholar
  10. 10.
    Devinsky, F., and I. Lacko, Synthesis, Surface Activity, and Micelle Formation of Some Bis-quaternary Ammonium Salts of Glycine Derivatives, Tenside Surf. Det. 27:344–349 (1990).Google Scholar
  11. 11.
    Zhu, Y.-P., A. Masuyama, and M. Okahara, Preparation and Surface Active Properties of Amphipathic Compounds with Two Sulfate Groups and Two Lipophilic Alkyl Chains, J. Am. Oil Chem. Soc. 67:459–463 (1990).Google Scholar
  12. 12.
    Zhu, Y.-P., A. Masuyama, and M. Okahara, Preparation and Surface-Active Properties of New Amphipathic Compounds with Two Phosphate Groups and Two Long-Chain Alkyl Groups, 68:268–271 (1991).Google Scholar
  13. 13.
    Zhu, Y.-P., A. Masuyama, T. Nagata, and M. Okahara, Preparation and Properties of Double-Chain Surfactants Bearing Two Sulfonate Groups, J. Jpn. Oil Chem. Soc. (Yukagaku) 40:473–477 (1991).Google Scholar
  14. 14.
    Menger, F., and C.A. Littau, Gemini Surfactants: Synthesis and Properties, J. Am. Chem. Soc. 113:1451–1452 (1991).CrossRefGoogle Scholar
  15. 15.
    Zhu, Y.-P., A. Masuyama, Y.-I. Kirito, and M. Okahara, Preparation and Properties of Double- or Triple- Chain Surfactants with Two Sulfonate Groups Derived from N-Acyldiethanolamines, 68:539–543 (1991).Google Scholar
  16. 16.
    Zana, R., M. Benrraou, and R. Rueff, Alkanediyl-α,ω-bis(dimethylalkyl-ammonium bromide) Surfactants. 1. Effect of the Spacer Chain Length on the CMC and Micelle Ionization Degree, Langmuir 7:1072–1075 (1991).CrossRefGoogle Scholar
  17. 17.
    Devinsky, F., I. Lacko, and T. Iman, Relationship Between Structure and Solubilization Properties of Some Bisquaternary Ammonium Amphiphiles, J. Colloid Interface Sci. 143:336–341 (1991).CrossRefGoogle Scholar
  18. 18.
    Stein, T.M., and S.H. Gellman, Synthesis and Aggegation Properties of a New Family of Amphiphiles with an Unusual Headgroup Topology, J. Am. Chem. Soc. 114:3943–3950 (1992).CrossRefGoogle Scholar
  19. 19.
    Masuyama, A., T. Hirono, Y.-P. Zhu, M. Okahara, and M.J. Rosen, Synthesis and Properties of Bis (taurine) Types of Double-Chain Surfactants, J. Jpn. Oil Chem. Soc. (Yukagaku) 41:301–305 (1992).Google Scholar
  20. 20.
    Zhu, Y.-P., A. Masuyama, Y.-I. Kirito, M. Okahara, and M.J. Rosen, Preparation and Properties of Glycerol-based Double- or Triple-chain Surfactants with Two Hydrophilic Ionic Groups, J. Am. Oil Chem. Soc. 69:626–632 (1992).Google Scholar
  21. 21.
    Rosen, M.J., Z.H. Zhu, and X.Y. Hua, Relations of Structure to Properties of Surfactants, 16. Linear Decyldiphenylether Sulfonates, 69:30–33 (1992).Google Scholar
  22. 22.
    Rosen, M.J., Z.H. Zhu, and T. Gao, Synergism in Binary Mixtures of Surfactants. 11. Mixtures Containing Mono- and Disulfonated Alkyl-and Dialkyldiphenylethers, J. Colloid Interface Sci. 157:254–259 (1993).CrossRefGoogle Scholar
  23. 23.
    Ono, D., T. Tanaka, A. Masuyana, Y. Nakatsuji, and M. Okahara, Preparation and Properties of Bis (sodium carboxylate) Types of Cleavable Surfactants Derived from Diethyl Tartrate and Fatty Carbonyl Compounds, J. Jpn. Oil Chem. Soc. (Yakagaku) 42:10–16 (1993).Google Scholar
  24. 24.
    Zhu, Y.-P., A. Masuyama, Y. Nakatsuji, and M. Okahara, Synthesis and Properties of Bis (sulfonate) Types of Doublechain Surfactants Bearing a Sulfur Atom in the Connecting Part, 42:86–94 (1993).Google Scholar
  25. 25.
    Zhu, Y.-P., A. Masuyama, Y. Kobata, Y. Nakatsuji, M. Okahara, and M.J. Rosen, Double-Chain Surfactants with Two Carboxylate Groups and Their Relation to Similar Doublechain Compounds, J. Colloid Interface Sci. 158:40–45 (1993).CrossRefGoogle Scholar
  26. 26.
    Menger, F., and C.A. Littau, Gemini Surfactants: A New Class of Self-Assembling Molecules, J. Am. Chem. Soc. 115: 10083–10090 (1993).CrossRefGoogle Scholar
  27. 27.
    Alami, E., H. Levy, and R. Zana, Alkanediyl-bis (dimethylalkylamminonium bromide) Surfactants. 2. Structure of the Lyotropic Mesophases in the Presence of Water, Langmuir 9:940–944 (1993).CrossRefGoogle Scholar
  28. 28.
    Alami, E., G. Beinert, P. Marie, and R. Zana, Alkanediylbis(dimethylalkylammonium bromide) Surfactants. 3. Behavior at the Water Interface, 9:1465–1467 (1993).CrossRefGoogle Scholar
  29. 29.
    Zana, R., and Y. Talmon, Dependence of Aggregate Morphology on Structure of Dimeric Surfactants, Nature 362: 228–229 (1993).CrossRefGoogle Scholar
  30. 30.
    Zhu, Y.-P., K. Ishikara, A. Masuyama, Y. Nakatsuji, and M. Okahara, Preparation and Properties of Double-chain Bis (quaternary ammonium) Compounds, J. Jpn. Oil Chem. Soc. (Yukagaku) 42:161–167 (1993).Google Scholar
  31. 31.
    Pinazo, A., M. Diz, C. Solans, M.A. Pes, P. Erra, and M.R. Infante, Synthesis and Properties of Cationic Surfactants Containing a Disulfide Bond, J. Am. Oil Chem. Soc. 70:37–42 (1993).Google Scholar
  32. 32.
    Diz, M., A. Manresa, A. Pinazo, P. Erra, and Ma.R. Infante, Synthesis, Surface Active Properties and Antimicrobial Activity of New Bis Quaternary Ammonium Compounds, J. Chem. Soc. Perkin Trans. 2:1871–1876 (1994).Google Scholar
  33. 33.
    Karaborni, S., K. Esselink, P.A.J. Hilbers, B. Smit, J. Karthauser, N.M. van Os, and R. Zana, Simulating the Self-Assembly of Gemini (Dimeric) Surfactants, Science 266:254–256 (1994).CrossRefGoogle Scholar
  34. 34.
    Pinazo, A., Ma.R. Infante, C.H. Chang, and E.I. Franses, Surface Tension Properties of Aqueous Solutions of Disulfur Betaine Derivatives, Colloids Surf. A 87:117–123 (1994).CrossRefGoogle Scholar
  35. 35.
    Seguer, J., C. Selve, and Ma.R. Infante, New Non-ionic Surfactants from Lysine and Their Performance, J. Disp. Sci. Tech. 15:591–610 (1994).Google Scholar
  36. 36.
    Gao, T., and M.J. Rosen, Dynamic Surface Tension of Aqueous Surfactant Solutions. 6. Compounds Containing Two Hydrophilic Head Groups and Two or Three Hydrophobic Groups and Their Mixtures with Other Surfactants, J. Am. Oil Chem. Soc. 71:771–776 (1994).Google Scholar
  37. 37.
    Masuyama, A., M. Yokota, Y.-P. Zhu, T. Kida, and Y. Nakatsuji, Unique Interfacial Properties of a Homologous Series of Novel Triple-chain Amphiphiles Bearing Three Anionic Head Groups Derived from 1,1,1-Tris (hydroxymethyl) ethane. J. Chem. Soc., Chem. Commun.:1435–1436 (1994).Google Scholar
  38. 38.
    Rosen, M.J., T. Gao, Y. Nakatsuji, and A. Masuyama, Synergism in Binary Mixtures of Surfactants. 12. Mixtures Containing Surfactants with Two Hydrophilic and Two or Three Hydrophobic Groups, Colloids Surf. 88:1–11 (1994).CrossRefGoogle Scholar
  39. 39.
    Diamant, H., and D. Andelman, Dimeric Surfactants: Spacer Chain Conformation and Specific Area at the Air/Water Interface, Langmuir 10:2910–2916 (1994).CrossRefGoogle Scholar
  40. 40.
    Eastoc, J., P. Rogueda, B.I. Harrison, A.M. Howe, and A.R. Pitt, Properties of a Dichained Sugar Surfactant, 10:4429–4433 (1994).CrossRefGoogle Scholar
  41. 41.
    Briggs, C.B.A., I.M. Newington, and A.R. Pitt, Synthesis and Properties of Some Novel Nonionic Polyol Surfactants, J. Chem. Soc. Chem. Commun.:379–380 (1995).Google Scholar
  42. 42.
    Danino, D., Y. Talmon, and R. Zana, Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants (dimeric surfactants): 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir 11:1448–1456 (1995).CrossRefGoogle Scholar
  43. 43.
    Schosseler, F., O. Anthony, G. Beinert, and R. Zana, Mixed Micelles of the Dimeric Surfactant Ethanediyl-1,2-bis (dodecyldimethylammonium)bromide and Its Corresponding Monomer, the Dodecyltrimethylammonium Bromide: A Neutron Scattering Study, 11:3347–3350 (1995).CrossRefGoogle Scholar
  44. 44.
    Song, L.D., and M.J. Rosen, Surface Properties, Micellization, and Premicellar Aggregation of Gemini Surfactants with Rigid and Flexible Spacers, 12:1149–1153 (1996).CrossRefGoogle Scholar
  45. 45.
    Rosen, M.J., and L.D. Song, Dynamic Surface Tension of Aqueous Surfactant Solutions. 8. Effect of Spacer on Dynamic Properties of Gemini Surfactant Solutions, J. Colloid Interface Sci. 179:261–268 (1996).CrossRefGoogle Scholar
  46. 46.
    Liu, L., and M.J. Rosen, The Interaction of Some Novel Diquaternary Gemini Surfactants with Anionic Surfactants, 179:454–459 (1996).CrossRefGoogle Scholar
  47. 47.
    Eastoc, J., P. Rogueda, A.M. Howe, A.R. Pitt, and R.K. Heenan, Properties of New Glucamide Surfactants, Langmuir 12:2701–2705 (1996).CrossRefGoogle Scholar
  48. 48.
    Dam, T., J.B.F.N. Engberts, J. Karthauser, S. Karaborni, and N.M. van Os, Synthesis, Surface Properties and Oil Solubilization Capacity of Cationic Gemini Surfactants, Colloids Surf. A 118:41–49 (1996).CrossRefGoogle Scholar
  49. 49.
    Okano, T.N., Egawa, M. Fujiwara, and M. Fukuda, α-Sulfonated Fatty Acid Esters: II. Solution Behavior of α-Sulfonated Fatty Acid Polyethylene Glycol Esters, J. Am. Oil Chem. Soc. 73:31–37 (1996).CrossRefGoogle Scholar
  50. 50.
    Macian, M., J. Seguer, Ma.R. Infante, C. Selve, and M.P. Vinardell, Preliminary Studies of the Toxic Effects of Nonionic Surfactants Derived from Lysine, Toxicology 106:1–9 (1996).CrossRefGoogle Scholar
  51. 51.
    Kim, T.S., T. Hirao, and I. Ikeda, Preparation of bis-Quaternary Ammonium Salts from Epicholorohydrin, J. Am. Oil Chem. Soc. 73:67–71 (1996).CrossRefGoogle Scholar
  52. 52.
    Seguer, J., C. Selve, M. Allouch, and Ma.R. Infante, Nonionic Amphiphilic Compounds from Lysine as Molecular Mimics of Lecithins, 73:79–86 (1996).CrossRefGoogle Scholar
  53. 53.
    Allouch, M., Ma.R. Infante, J. Seguer, M.J. Stebe, and C. Selve, Nonionic Amphiphilic Compounds from Aspartic and Glutamic Acids as Structural Mimics of Lecithins, 73:87–96 (1996).CrossRefGoogle Scholar
  54. 54.
    Rosen, M.J., and L Liu, Surface Activity and Premicellar Aggregation of Some Novel Diquaternary Gemini Surfactants, 73:885–890 (1996).CrossRefGoogle Scholar
  55. 55.
    Kim, T.-S., T. Kida, Y. Nakatsuji, T. Hirao, and I. Ikeda, Surface-Active Properties of Novel Cationic Surfactants with Two Alkyl Chains and Two Ammonio Groups, 73:907–911 (1996).CrossRefGoogle Scholar
  56. 56.
    Jaeger, D.A., and E.L. Brown, Double-chain Surfactants with Two Carboxylate Head Groups That Form Vesicles, Langmuir 12:1976–1980 (1996).CrossRefGoogle Scholar
  57. 57.
    Perez, L., J.L. Torres, A. Manresa, C. Solans, and Ma.R. Infante, Synthesis, Aggegation, and Biological Properties of a New Class of Gemini Cationic Amphiphilic Compounds from Arginine, bis (Args), 12:5296–5301 (1996).CrossRefGoogle Scholar
  58. 58.
    Danino, D., Y. Talmon, and R. Zana, Vesicle-to-Micelle Transformation in Systems Containing Dimeric Surfactants, J. Colloid Interface Sci. 185:84–93 (1997).CrossRefGoogle Scholar
  59. 59.
    Duivenvoorde, F.L., M.C. Feiters, S.J. van der Gaast, and J.B.F.N. Engberts, Synthesis and Properties of Di-n-dodecyl-α,ω-alkyl Bisphosphate Surfactants, Langmuir 13:3737–3743 (1997).CrossRefGoogle Scholar
  60. 60.
    Zana, R., M. In, H. Levy, and G. Duportail, Alkanediylbis(dimethylalkylammonium bromide). 7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity, 13:5552–5557 (1997).CrossRefGoogle Scholar
  61. 61.
    Rico-Lattes, I., and A. Lattes, Synthesis of New Sugar-Based Surfactants Having Biological Applications: Key Role of Their Self-Association, Colloids Surf. A 123–124:37–48 (1997).CrossRefGoogle Scholar
  62. 62.
    Castro, M.J.L., J. Kovensky, and A.F. Cirelli, Gemini Surfactants from Alkyl Glucosides, Tetrahedron Lett. 38:3995–3998 (1997).CrossRefGoogle Scholar
  63. 63.
    Reitz, G., and G. Boehmke, Great Britain Patent 1,503,280 (1978).Google Scholar
  64. 64.
    Behler, A., R. Piorr, and M. Schaefer, U.S. Patent, 4,936,551 (1990).Google Scholar
  65. 65.
    Okahara, M., and A. Masuyama, U.S. Patent 5,160,450 (1992).Google Scholar
  66. 66.
    Gruber, B., Ger. Offen. DE 4,232,414 A1 (1994).Google Scholar
  67. 67.
    Wangemann, F. Ger. Offen. DE 4,321,022 A1 (1995).Google Scholar
  68. 68.
    Raths, H.C., and W.E. Noack, Ger. Offen. DE 4,401,565 (1995).Google Scholar
  69. 69.
    Kaiser, R.J., U.S. Patent 5,507,863 (1996).Google Scholar
  70. 70.
    Kaiser, R.J., U.S. Patent 5,487,778 (1996).Google Scholar
  71. 71.
    Varadaraj, R., and S. Zushma, U.S. Patent 5,585,516 (1996).Google Scholar
  72. 72.
    Varadaraj, R., and S. Zushma, U.S. Patent 5,493,050 (1996).Google Scholar
  73. 73.
    Kaiser, R.J., U.S. Patent 5,599,933 (1997).Google Scholar
  74. 74.
    Okano, T., M. Fukuda, J. Tanabe, M. Ono, Y. Akabane, H. Takahashi, N. Egawa, T. Sakotani, H. Kanao, and Y. Yoneyanna, U.S. Patent 5,681,803 (1997).Google Scholar
  75. 75.
    Raths, H., Ger. Offen. DE 19,622,612 (1997).Google Scholar
  76. 76.
    Tracy, D.J., R. Li, and J.M. Ricca, U.S. Patent 5,710,121 (1998).Google Scholar
  77. 77.
    Kitsubi, T., M. Uno, K. Kita, Y. Fujikura, A. Nakano, M. Tosaka, K. Yahagi, S. Tamura, and K. Maruta, U.S. Patent 5,714,457 (1998).Google Scholar
  78. 78.
    McConnell, R.B., U.S. Patent 3,855,235 (1974).Google Scholar
  79. 79.
    McConnell, R.B., U.S. Patent 3,887,476 (1975).Google Scholar
  80. 80.
    Login, R.B., U.S. Patent 4,764,306 (1988).Google Scholar
  81. 81.
    Login, R.B., U.S. Patent 4,734,277 (1988).Google Scholar
  82. 82.
    Login, R.B., U.S. Patent 4,812,263 (1989).Google Scholar
  83. 83.
    Chauhuri, R.K., D.J. Tracy, and R.B. Login, U.S. Patent 4,886,890 (1989).Google Scholar
  84. 84.
    Li, J., N. Dahanayake, R.L. Reierson, and D.J. Tracy, U.S. Patent 5,643,498 (1997).Google Scholar
  85. 85.
    Bersworth, F., U.S. Patent 2,524,218 (1950).Google Scholar
  86. 86.
    Bersworth, F., U.S. Patent 2,530,147 (1950).Google Scholar
  87. 87.
    Bersworth, F., U.S. Patent 2,532,391 (1950).Google Scholar
  88. 88.
    Schmitz, A. G.B. Patent 1,149,140 (1967).Google Scholar
  89. 89.
    Nakamo, A., T. Kitsuki, K. Kita, and M. Asuga, International Patent PCT WO 96/01800 (1996).Google Scholar
  90. 90.
    Kwetkat, K., International Patent PCT WO 97/31890 (1997).Google Scholar
  91. 91.
    Li, J., M. Dahanayake, R.L. Reierson, and D.J. Tracy, U.S. Patent 5,656,586 (1997).Google Scholar
  92. 92.
    Briggs, C.B., and A.R. Pitts, U.S. Patent 4,892,806 (1990).Google Scholar
  93. 93.
    Gorelli-Calvet, R., F. Brisset, J. Rico, A. Lattes, and L. Godefroy, U.S. Patent 5,403,922 (1995).Google Scholar
  94. 94.
    Adams, K., Eur. Pat. Appl. EPO 688781 (1995).Google Scholar
  95. 95.
    Scheibel, J., D.S. Connor, and E.Y. Fu, U.S. Patent 5,534,197 (1996).Google Scholar
  96. 96.
    Connor, D.S., Y. Fu, and J.J. Scheibel, U.S. Patent 5,512,699 (1996).Google Scholar
  97. 97.
    Tsubone, K., H. Nishio, and M. Kusumaru, Jpn. Kokai Tokkyo Koho JP 08,291,040 (1996).Google Scholar
  98. 98.
    Tsubone, K., H. Nishio, and M. Kusumaru, Jpn. Kokai Tokkyo Koho JP 08,319,262 (1996).Google Scholar
  99. 99.
    Wong, S., U.S. Patent 5,622,938 (1997).Google Scholar
  100. 100.
    Rosen, M.J., Surfactants and Interfacial Phenomena, 2nd edn., John Wiley, New York, 1989, pp. 84–85.Google Scholar
  101. 101.
    Draves, C.Z., and R.G. Clarkson, A New Method for the Evaluation of Wetting Agents, Amer. Dyestuff Rept. 20:201–209 (1931).Google Scholar
  102. 102.
    Rosen, M.J., and Z.H. Zhu, Enhancement of Wetting Properties of Water-Insoluble Surfactants via Solubilization, J. Am. Oil Chem. Soc. 70:65 (1993).Google Scholar
  103. 103.
    Dreja, M., and B. Tieke, Polymerization of Styrene in Ternary Microemulsion Using Cationic Gemini Surfactants, Langmuir 14:800–807 (1998).CrossRefGoogle Scholar

Copyright information

© AOCS Press 1998

Authors and Affiliations

  • Milton J. Rosen
    • 1
  • David J. Tracy
    • 2
  1. 1.Surfactant Research InstituteBrooklyn College of the City University of New YorkBrooklyn
  2. 2.Surfactants and Performance IngredientsRhodia, Inc.Cranbury

Personalised recommendations