Journal of Surfactants and Detergents

, Volume 20, Issue 6, pp 1453–1465 | Cite as

Self-Aggregation and Emulsifying Properties of Methyl Ester Sulfonate Surfactants

  • Amel Asselah
  • Aurora Pinazo
  • Amalia Mezei
  • Lourdes Pérez
  • Amel Tazerouti
Original Article


Methyl ester sulfonate (MES) anionic surfactants made from natural resources are of particular interest as sustainable surfactants. They offer good physicochemical properties for applications as detergents and emulsifiers. The liquid crystal structures of MES surfactants synthesized in a previous work were determined by polarizing optical microscopy (POM) and small-angle X-ray scattering (SAXS). The emulsifying activity for each surfactant was also measured, and the stability of emulsions was estimated and compared to that induced by sodium dodecyl sulfate (SDS). The POM micrographs showed the presence of birefringent textures. Several factors, including temperature and hydration, influenced the stability of the phases and their structure. SAXS confirmed the structure of the phases formed by dry and hydrated ф-MES surfactants at 25 °C, giving the position of peaks corresponding to the ratio 1:2:3 and revealing the phase transitions of lamellar to double lamellar or the reverse. Also, the Bragg distance (d) decreased with an increase in chain length from 13 to 17 carbon atoms and an increase in the area per molecule of surfactant. The geometric packing parameters were also determined, and suggest that surfactants are tilted. The stability of surfactant emulsions is around 60%, which is comparable to that of SDS. The micrographs show that the emulsions formed are O/W, and an increase in chain length gives rise to a decrease in the size of the emulsion droplets. These results are confirmed by the values of hydrophilic-lipophilic balance (HLB) which reveals the hydrophilic nature of these surfactants.


Fatty acids Methyl ester sulfonates Aggregation Liquid crystals Birefringence Emulsification 



This research was supported by the Department of Surfactant Technology, Institute of Advanced Chemistry of Catalonia-Spanish Council for Scientific Research, under project MINECO-CTQ 2013-41514-P. J. Caelles from the SAXS- WAXS service at IQAC is kindly acknowledged for his help with SAXS measurements.


  1. 1.
    Tanford C. The hydrophobic effect: formation of micelles and biological membranes. Chapter 12, Motility and Order. 2nd ed. New York: Wiley; 1980. p. 128–38.Google Scholar
  2. 2.
    Lindman B, Wennerström H. Micelles. Amphiphile aggregation in aqueous solution. Top Curr Chem. 1980;87:1–87.CrossRefGoogle Scholar
  3. 3.
    Degiorgio V, Corti M. Physics of amphiphiles-micelles, vesicles, and microemulsions. Amsterdam: Noth-Holland; 1985. p. 121–51.Google Scholar
  4. 4.
    Boschkova K, Kronberg B, Stalgren JJR, Persson K, Salageon MR. Lubrication in aqueous solutions using cationic surfactants—a study of static and dynamic forces. Langmuir. 2002;18:1680–7.CrossRefGoogle Scholar
  5. 5.
    Rosen MJ. Surfactants and interfacial phenomena. 3rd ed. New York: Wiley; 2004. p. 107–313.CrossRefGoogle Scholar
  6. 6.
    Myers D. Surfactant science and technology. 3rd ed. New Jersey: Wiley; 2006. p. 281–312.Google Scholar
  7. 7.
    Chupa J, Misner S, Sachdev A, Wisnelwky P, Smith GA. Saop, fatty acids, and synthetic detergents. In: Kent JA, editor. Handbook of industrial chemistry and biotechnology. 12th ed. USA: Springer; 2012. p. 1431–72.CrossRefGoogle Scholar
  8. 8.
    Cohen L, Trujillo F. Performance of sulfoxylated fatty acid methyl esters. J Surfactants Deterg. 1999;2:363–5.CrossRefGoogle Scholar
  9. 9.
    Yueming J, Senlin T, Jiali G, Xiao R, Xinyan L, Shumei G. Synthesis, characterization and exploratory application of anionic surfactant fatty acid methyl ester sulfonate from waste cooking oil. J Surfactants Deterg. 2016;19:467–75.CrossRefGoogle Scholar
  10. 10.
    Schambil F, Schwuger MJ. Physico-chemical properties of alpha sulpho fatty acid methyl esters and alpha sulpho fatty acid methyl esters di-salts. Tenside Surf Det. 1990;27:380–5.Google Scholar
  11. 11.
    Fujiwara M, Okano T, Amano H, Asano H, Ohbu K. Phase diagram of α-sulfonated palmitic acid methyl ester sodium salt-water system. Langmuir. 1997;13:3345–8.CrossRefGoogle Scholar
  12. 12.
    Watanabe H, Morigaki A, Kaneko Y, Tobori N. Effects of temperature and humidity history on brittlness of α- sulfonated fatty acid methyl ester salt crystals. J Oleo Sci. 2016;65:143–50.CrossRefGoogle Scholar
  13. 13.
    Lim WL, Ramle RA. The behavior of methyl esters sulphonate at the water-oil interface: straight-chained methyl ester from lauryl to stearyl as an oil phase. J Dispers Sci Technol. 2009;30:131–6.CrossRefGoogle Scholar
  14. 14.
    Holmberg K. Novel surfactants: preparation applications and biodegradability, vol. 114. 2nd ed. USA: Mercel Dekker; 2005. p. 109–10.Google Scholar
  15. 15.
    Karsa DR, Porter MR. Biodegradability of surfactants. 2nd ed. London: Chapman and Hall; 1994. p. 257.Google Scholar
  16. 16.
    Nalewaja JD, Robert Goss G, Scott Tann R. Pesticide formulations and application systems. ASTM USA. 1998;18:194.Google Scholar
  17. 17.
    Asselah A, Tazerouti A. Photosulfochlorination synthesis and physicochemical properties of methyl ester sulfonates derived from lauric and myristic acids. J Surfactants Deterg. 2014;17:1151–60.CrossRefGoogle Scholar
  18. 18.
    Cohen L, Trujillo F. Synthesis, characterization, and surface properties of sulfoxylated methyl esters. J Surfactants Deterg. 1998;1:335–41.CrossRefGoogle Scholar
  19. 19.
    Lawrence ASC. Polar interactions in detergency. In: Durham K, editor. Surface activity and detergency. London: Macmillan; 1961. p. 158.Google Scholar
  20. 20.
    Pinazo A, Angelet M, Pons R, Lozano M, Infante MR, Pérez L. Lysine-bisglycidol conjugates as novel lysine cationic surfactants. Langmuir. 2009;25:7803–14.CrossRefGoogle Scholar
  21. 21.
    Israelachvili JN, Mitchell DJ, Ninham BW. Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta. 1977;470:185–201.CrossRefGoogle Scholar
  22. 22.
    Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans. 1976;72:1525–68.CrossRefGoogle Scholar
  23. 23.
    Israelachvili JN. The sciences and applications of emulsions—an overview. Colloids Surf, A. 1993;91:1–8.CrossRefGoogle Scholar
  24. 24.
    Tartar HV. A theory of the structure of the micelles of normal paraffin-chain salts in aqueous solution. J Phys Chem. 1955;59:1195–9.CrossRefGoogle Scholar
  25. 25.
    Small DM. The physical chemistry of lipids: handbook of lipid research, vol. 4. New York: Plenum; 1986. p. 97–232.CrossRefGoogle Scholar
  26. 26.
    Pinazo A, Perez L, Lozano M, Angelet M, Infante MR, Vinardell MP, Pons R. Aggregation properties of diacyl lysine surfactants derivatives: hydrophobic chain length and counterion effect. J Phys Chem B. 2008;112:8578–85.CrossRefGoogle Scholar
  27. 27.
    Infante MR, Moses V. Synthesis and surface activity properties of hydrophobic/hydrophilic peptides. Int J Pept Protein Res. 1994;43:173–9.CrossRefGoogle Scholar
  28. 28.
    Shimada A, Yamammoto L, Sase H, Yamazaki Y, Watanabe M, Arai S. Surface properties of enzymatically modified proteins in aqueous solution. Agric Biol Chem. 1984;48:2681–8.Google Scholar
  29. 29.
    Pons R, Erra P, Concepcion Solans. Viscoelastic properties of gel-emulsions: their relationship with structure and equilibrium properties. J Phys Chem. 1993;97:12320–4.CrossRefGoogle Scholar
  30. 30.
    Katsaras J, Gutberlet T. Lipid bilayers: structure and interactions. Biological Physics Series. New York: Springer; 2001. p. 9–19.CrossRefGoogle Scholar
  31. 31.
    Merta J, Torkkeli M, Ikonen T, Serimaa R, Stenius P. Structure of cationic starch (SC)/anionic surfactant complexes studied by small angle X-ray scattering (SAXS). Macromolecules. 2001;34:2927–46.CrossRefGoogle Scholar
  32. 32.
    Brown GH, Wolken JJ. Liquid crystals and biological structures. New York: Academic Press; 1979. p. 165–7.CrossRefGoogle Scholar
  33. 33.
    An Y, Xu J, Zhang J, Hu C, Li G, Wang Z, Wang Z, Zhang X, Zheng L. Studies on the phase properties of lyotropic liquid crystals of brij35/sodium oleate/oleic acid/water system: by means of polarizing microscope, saxs, 2H-NMR and rheological methods. Sci China Ser: Chem. 2006;49:411–22.CrossRefGoogle Scholar
  34. 34.
    Luzzati V, Ph D, Husson F. Liquid-crystalline phases of lipid-water systems. J Cell Biol. 1962;12:207–19.CrossRefGoogle Scholar
  35. 35.
    Alexandridis P, Olsson U, Lindman B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir. 1998;14:2627–38.CrossRefGoogle Scholar
  36. 36.
    Holmberg K. Handbook of applied surface and colloid chemistry. New York: Wiley; 2001. p. 299–323.Google Scholar
  37. 37.
    Nainggolan I, Radiman S, Hamzah AS, Hashim R. Colloids Surf B. 2009;73:84–91.CrossRefGoogle Scholar
  38. 38.
    Mezei A, Pérez L, Pinazo A, Comelles F, Infante MR, Pons R. Self-assembly of pH-sensitive cationic lysine based surfactants. Langmuir. 2012;28(49):16761–71.CrossRefGoogle Scholar
  39. 39.
    Kekicheff P, Madelmont GC, Ollivion M. Phase diagram of sodium dodecyl sulfate-water system. J Colloid Inter Sci. 1989;131:112–32.CrossRefGoogle Scholar
  40. 40.
    Abe Y, Harata K, Fujiwara M, Ohbu K. Intercalation of cations in crystalline anionic surfactants. J Chem Soc Perkin Trans. 1999;2:85–97.CrossRefGoogle Scholar
  41. 41.
    Freidel G. The mesomorphic states of matter. Ann Physique. 1922;18:273–474.CrossRefGoogle Scholar
  42. 42.
    Blinov Lev M. Structure and properties of liquid crystals, vol. 1. The Netherlands: Springer; 2011. p. 41–148.CrossRefGoogle Scholar
  43. 43.
    Okano T, Tanabe J, Fukuda M, Tanaka M. α-sulfonated fatty acid esters: structural effects of sodium α-sulfonated fatty acid higher alcohol esters on surface-active properties and emulsification ability. J Am Oil Chem Soc. 1992;69:1.CrossRefGoogle Scholar
  44. 44.
    Hoefer R, Bartnick B, Schmid KH and Wagemud B (1985) Ger. Patent 3,339,407 to Henkel K.-G.a.A.Google Scholar
  45. 45.
    Binks BP. Emulsions, recent advances in understanding in modern aspects of emulsion science. Cambridge: The Royal Society of Chemistry; 1998. p. 56–174.Google Scholar
  46. 46.
    Elena Bautista M, Pérez L, Teresa García M, Cuadros S, Marsal A. Valorization of tannery wastes: lipoamino acid surfactant mixtures from the protein fraction of process wastewater. Chem Eng J. 2015;262:399–408.CrossRefGoogle Scholar
  47. 47.
    Dong X, Zhang W, Zong Q, Liu Q, He J. Physicochemical and emulsifying properties of “extended” triblock copolymers. Colloid Polym Sci. 2015;293:376. doi: 10.1007/s00396-014-3420-8.CrossRefGoogle Scholar
  48. 48.
    Bibette J, Goutayer M, Texier-Nogues I (2008) Method for preparing nano-emulsions. WO 2008104717 A2Google Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Amel Asselah
    • 1
    • 2
  • Aurora Pinazo
    • 3
  • Amalia Mezei
    • 3
  • Lourdes Pérez
    • 3
  • Amel Tazerouti
    • 1
  1. 1.Laboratoire de Chimie Organique Appliquée, Faculté de ChimieUniversité des Sciences et de la Technologie Houari Boumediene (USTHB)Bab EzzouarAlgeria
  2. 2.Département du Génie des Procédés, Faculté des Sciences de l’Ingénieur (FSI)Université M’Hamed Bougara de Boumerdes (UMBB)BoumerdesAlgeria
  3. 3.Institut de Química Avançada de Catalunya, IQAC-CSICBarcelonaSpain

Personalised recommendations